Skip to main content
Log in

General model of multi-quality detection for apple from different origins by Vis/NIR transmittance spectroscopy

Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Visible Near-infrared (Vis/NIR) spectroscopy is widely used to evaluate fruit quality due to its fast and non-destructive advantage, but the diffuse reflectance mode only obtains information of the surface, and the traditional model is difficult to meet multi-origin detection in practical applications. A portable Vis/NIR transmittance prototype was designed and developed to acquire Vis/NIR spectra of apple samples from different origins. Soluble solids content (SSC), firmness, pH and vitamin C (VC) content were determined as the internal quality parameter. The partial least square (PLS) model was established by optimizing the best from different spectral preprocessing and feature selection algorithms. The results showed that the competitive adaptive weighted PLS (CARS-PLS) achieved the best prediction performance, with correlation coefficient of prediction (Rp), and root mean square error of prediction (RMSEP) values of 0.940, 0.542 °Brix for SSC, 0.789, 7.018 N for firmness, 0.698, 0.119 for pH, and 0.804, 10.363 mg kg−1 for VC content, respectively. The general model of CARS-PLS was verified by the independent prediction sets from 7 origins. The establishment of general models expanded the prediction range, improved the prediction stability of models between different cultivars, and reduced the complexity of the models through appropriate preprocessing and feature variable selection methods. The development of the general model of different origins and cultivars for predicting the internal quality of apple has a great potential application using Vis/NIR transmittance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Karakasova, A. Stefanoski, V. Rafajlovska, J. Klopceska, ed. International Society for Horticultural Science (ISHS), Leuven, pp. 559–564 (2009).

  2. FAOSTAT. http://www.fao.org/faostat/zh/?#search/apple.

  3. F.R. Harker, E.M. Kupferman, A.B. Marin, F.A. Gunson, C.M. Triggs, Postharvest Biol. Technol. 50, 70–78 (2008). https://doi.org/10.1016/j.postharvbio.2008.03.020

    Article  Google Scholar 

  4. Y. Peng, R. Lu, Postharvest Biol. Technol. 48, 52–62 (2008). https://doi.org/10.1016/j.postharvbio.2007.09.019

    Article  Google Scholar 

  5. S. Fan, B. Zhang, J. Li, C. Liu, W. Huang, X. Tian, Postharvest Biol. Technol. 121, 51–61 (2016). https://doi.org/10.1016/j.postharvbio.2016.07.007

    Article  Google Scholar 

  6. A. Tschida, V. Stadlbauer, B. Schwarzinger, M. Maier, J. Pitsch, F. Stübl, U. Müller, P. Lanzerstorfer, M. Himmelsbach, J. Wruss, G. Klanert, J. Schurr, L. Wurm, F. Rosner, O. Höglinger, S. Winkler, J. Weghuber, Food Chem. 338, 128065 (2021). https://doi.org/10.1016/j.foodchem.2020.128065

    Article  CAS  PubMed  Google Scholar 

  7. B.M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K.I. Theron, J. Lammertyn, Postharvest Biol. Technol. 46, 99–118 (2007). https://doi.org/10.1016/j.postharvbio.2007.06.024

    Article  Google Scholar 

  8. T. Ma, Y. Xia, T. Inagaki, S. Tsuchikawa, Postharvest Biol. Technol. 173, 111417 (2021). https://doi.org/10.1016/j.postharvbio.2020.111417

    Article  CAS  Google Scholar 

  9. E. Bobelyn, A.-S. Serban, M. Nicu, J. Lammertyn, B.M. Nicolai, W. Saeys, Postharvest Biol. Technol. 55, 133–143 (2010). https://doi.org/10.1016/j.postharvbio.2009.09.006

    Article  CAS  Google Scholar 

  10. X. Zou, J. Zhao, Y. Li, Vib. Spectrosc. 44, 220–227 (2007). https://doi.org/10.1016/j.vibspec.2006.11.005

    Article  CAS  Google Scholar 

  11. X. Xu, H. Xu, L. Xie, Y. Ying, J. Food Meas. Charact. 13, 506–512 (2019). https://doi.org/10.1007/s11694-018-9964-4

    Article  Google Scholar 

  12. G. Fan, J. Zha, R. Du, L. Gao, J. Food Eng. 93, 416–420 (2009). https://doi.org/10.1016/j.jfoodeng.2009.02.006

    Article  Google Scholar 

  13. Z. Fathizadeh, M. Aboonajmi, S.R. Hassan-Beygi, Inf. Process. Agric. (2021). https://doi.org/10.1016/j.inpa.2020.12.002

    Article  Google Scholar 

  14. J. Sun, R. Künnemeyer, A. McGlone, P. Rowe, Postharvest Biol. Technol. 119, 58–68 (2016). https://doi.org/10.1016/j.postharvbio.2016.04.019

    Article  Google Scholar 

  15. S.N. Jha, R. Garg, J. Food Sci. Technol. 47, 207–213 (2010). https://doi.org/10.1007/s13197-010-0033-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. Pissard, V. Baeten, J.-M. Romnee, P. Dupont, A. Mouteau, M. Lateur, Biotechnol. Agrono. Soc. Environ. 16, 294–306 (2012)

    CAS  Google Scholar 

  17. H. Jiang, Y. He, Q. Chen, J. Sci. Food Agric. 101, 3328–3335 (2021). https://doi.org/10.1002/jsfa.10962

    Article  CAS  PubMed  Google Scholar 

  18. R. Khodabakhshian, B. Emadi, M. Khojastehpour, M.R. Golzarian, J. Food Meas. Charact. 13, 3130–3139 (2019). https://doi.org/10.1007/s11694-019-00235-z

    Article  Google Scholar 

  19. X. Tian, Q. Wang, W. Huang, S. Fan, J. Li, Postharvest Biol. Technol. 168, 111269 (2020). https://doi.org/10.1016/j.postharvbio.2020.111269

    Article  CAS  Google Scholar 

  20. H. Huang, H. Yu, H. Xu, Y. Ying, J. Food Eng. 87, 303–313 (2008). https://doi.org/10.1016/j.jfoodeng.2007.12.022

    Article  CAS  Google Scholar 

  21. A. Peirs, J. Tirry, B. Verlinden, P. Darius, B.M. Nicolaı̈, Postharvest Biol. Technol. 28, 269–280 (2003). https://doi.org/10.1016/S0925-5214(02)00196-5

    Article  CAS  Google Scholar 

  22. S. Musacchi, S. Serra, Sci. Hortic. 234, 409–430 (2018). https://doi.org/10.1016/j.scienta.2017.12.057

    Article  Google Scholar 

  23. M. Dutot, L.M. Nelson, R.C. Tyson, Postharvest Biol. Technol. 85, 45–56 (2013). https://doi.org/10.1016/j.postharvbio.2013.04.003

    Article  Google Scholar 

  24. R. Pourdarbani, S. Sabzi, S. Jarolmasjed, T. Panagopoulos, Appl. Sci. 10, 8145 (2020). https://doi.org/10.3390/app10228145

    Article  CAS  Google Scholar 

  25. X. Li, J. Huang, Y. Xiong, J. Zhou, X. Tan, B. Zhang, Comput. Electron. Agr. 155, 23–31 (2018). https://doi.org/10.1016/j.compag.2018.10.003

    Article  Google Scholar 

  26. Q. Zhang, B. Zhou, M. Li, Q. Wei, Z. Han, J. Integr. Agric. 17, 1338–1347 (2018). https://doi.org/10.1016/S2095-3119(17)61826-4

    Article  Google Scholar 

  27. NBS National Bureau of statistics of the People's Republic of China. http://www.stats.gov.cn/.

  28. Y. Xia, S. Fan, J. Li, X. Tian, W. Huang, L. Chen, Chemometri. Intell. Lab. Syst. 201, 104017 (2020). https://doi.org/10.1016/j.chemolab.2020.104017

    Article  CAS  Google Scholar 

  29. S. Abasi, S. Minaei, B. Jamshidi, D. Fathi, M.H. Khoshtaghaza, Sci. Hortic. 252, 7–13 (2019). https://doi.org/10.1016/j.scienta.2019.02.085

    Article  Google Scholar 

  30. Z. Guo, W. Huang, Y. Peng, Q. Chen, Q. Ouyang, J. Zhao, Postharvest Biol. Technol. 115, 81–90 (2016). https://doi.org/10.1016/j.postharvbio.2015.12.027

    Article  CAS  Google Scholar 

  31. L. Hu, C. Yin, S. Ma, Z. Liu, Spectrochim. Acta A 205, 574–581 (2018). https://doi.org/10.1016/j.saa.2018.07.054

    Article  CAS  Google Scholar 

  32. J. Wang, M. Zareef, P. He, H. Sun, Q. Chen, H. Li, Q. Ouyang, Z. Guo, Z. Zhang, D. Xu, J. Sci. Food Agric. 99, 5019–5027 (2019). https://doi.org/10.1002/jsfa.9743

    Article  CAS  PubMed  Google Scholar 

  33. H. Shi, P. Yu, Food Control 82, 57–65 (2017). https://doi.org/10.1016/j.foodcont.2017.06.015

    Article  CAS  Google Scholar 

  34. H. Li, J. Zhu, T. Jiao, B. Wang, W. Wei, S. Ali, Q. Ouyang, M. Zuo, Q. Chen, Spectrochim. Acta A 243, 118765 (2020). https://doi.org/10.1016/j.saa.2020.118765

    Article  CAS  Google Scholar 

  35. B. Lu, N. Liu, H. Li, K. Yang, C. Hu, X. Wang, Z. Li, Z. Shen, X. Tang, Soil Tillage Res. 191, 266–274 (2019). https://doi.org/10.1016/j.still.2019.04.015

    Article  Google Scholar 

  36. X. Guan, J. Liu, K. Huang, J. Kuang, D. Liu, Infrared Phys. Technol. 98, 305–310 (2019). https://doi.org/10.1016/j.infrared.2019.01.010

    Article  CAS  Google Scholar 

  37. Z. Guo, M. Wang, J. Wu, F. Tao, Q. Chen, Q. Wang, Q. Ouyang, J. Shi, X. Zou, Food Chem. 286, 282–288 (2019). https://doi.org/10.1016/j.foodchem.2019.02.020

    Article  CAS  PubMed  Google Scholar 

  38. H. Jiang, W. Xu, Q. Chen, Spectrochim. Acta A 214, 366–371 (2019). https://doi.org/10.1016/j.saa.2019.02.038

    Article  CAS  Google Scholar 

  39. Z. Guo, M. Wang, A.A. Agyekum, J. Wu, Q. Chen, M. Zuo, H.R. El-Seedi, F. Tao, J. Shi, Q. Ouyang, X. Zou, J. Food Eng. 279, 109955 (2020). https://doi.org/10.1016/j.jfoodeng.2020.109955

    Article  CAS  Google Scholar 

  40. Z. Sun, J. Fan, J. Wang, F. Wang, L. Nie, L. Li, Q. Dong, C. Li, R. Du, S. Quan, H. Zang, J. Mol. Struct. 1199, 126942 (2020). https://doi.org/10.1016/j.molstruc.2019.126942

    Article  CAS  Google Scholar 

  41. A.O. Barimah, Z. Guo, A.A. Agyekum, C. Guo, P. Chen, H.R. El-Seedi, X. Zou, Q. Chen, Food Control 1, 108341 (2021). https://doi.org/10.1016/j.foodcont.2021.108341

    Article  CAS  Google Scholar 

  42. L. Yuan, F. Mao, G. Huang, X. Chen, D. Wu, S. Li, X. Zhou, Q. Jiang, D. Lin, R. He, Postharvest Biol. Technol. 169, 111308 (2020). https://doi.org/10.1016/j.postharvbio.2020.111308

    Article  CAS  Google Scholar 

  43. J. Sun, R. Künnemeyer, A. McGlone, N. Tomer, Comput. Electron. Agric. 155, 32–40 (2018). https://doi.org/10.1016/j.compag.2018.09.041

    Article  Google Scholar 

  44. S. Fan, Q. Wang, X. Tian, G. Yang, Y. Xia, J. Li, W. Huang, Biosyst. Eng. 193, 138–148 (2020). https://doi.org/10.1016/j.biosystemseng.2020.02.017

    Article  Google Scholar 

  45. J. Li, H. Zhang, B. Zhan, Z. Wang, Y. Jiang, Infrared Phys. Technol. 102, 103066 (2019). https://doi.org/10.1016/j.infrared.2019.103066

    Article  CAS  Google Scholar 

  46. R. Pourdarbani, S. Sabzi, J.I. Arribas, Heliyon (2021). https://doi.org/10.1016/j.heliyon.2021.e07942

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31972151), Outstanding Young Teachers of Blue Project in Jiangsu Province, the Open Fund of Key Laboratory of Modern Agricultural Equipment and Technology of Ministry of Education (MAET202117), the Youth Project of Faculty of Agricultural Equipment of Jiangsu University (NZXB20210205) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Guo, Z., Zou, C. et al. General model of multi-quality detection for apple from different origins by Vis/NIR transmittance spectroscopy. Food Measure 16, 2582–2595 (2022). https://doi.org/10.1007/s11694-022-01375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01375-5

Keywords

Navigation