Skip to main content

Advertisement

Log in

Rapid identification and quantification of intramuscular fat adulteration in lamb meat with VIS–NIR spectroscopy and chemometrics methods

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Meat adulteration can be one of the main reasons of human’s healthy and safety problems. Therefore resolving this problem is a significant issue in food industry. VIS–NIR spectroscopy in this work was used as nondestructive technique to classify and evaluate the quantity of intramuscular fat in minced lamb meat. There were totally 110 samples and every sample weighed 10 gr. adulterated samples were prepared manually with 5%, 10%, 15%, and 20% (w/w) adulteration levels. Principle Component Analysis and Linear Discriminant Analysis (LDA) models were applied with different preprocessing methods to separate unadulterated and adulterated samples in to two and five class datasets. The best results of LDA model was 86.2% and 100% accuracy with Savitzky–Golay smoothing preprocessing for five and two class datasets, respectively. Partial Least Squares Regression model was built under cross-validation and external validation testing to quantify the adulteration level of samples. The best outcome of this model was with SNV with Correlation Coefficient of prediction Rp2 = 76.51% and root mean square error of prediction RMSEP = 0.76. Then Ultraviolet–Visible-Near infrared spectroscopy can be used safely as non-destructive technique for detection of adulteration in meat industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.I. Kademi, B.H. Ulusoy, C. Hecer, Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Rev. Intl. 35(3), 201–220 (2019)

    Article  CAS  Google Scholar 

  2. K. Candoğan, E.G. Altuntas, N. İğci, Authentication and quality assessment of meat products by fourier-transform infrared (FTIR) spectroscopy. Food Eng. Rev. 13(1), 66–91 (2021)

    Article  Google Scholar 

  3. FOOD, NATIONS. AOOTU. OECD-FAO agricultural outlook 2019–2028, FOOD & AGRICULTURE ORG (2019)

  4. I.H. Boyacı, H.T. Temiz, R.S. Uysal, H.M. Velioğlu, R.J. Yadegari, M.M. Rishkan, A novel method for discrimination of beef and horsemeat using Raman spectroscopy. Food Chem. 148, 37–41 (2014)

    Article  PubMed  CAS  Google Scholar 

  5. N. Dean, T.B. Murphy, G. Downey, Using unlabelled data to update classification rules with applications in food authenticity studies. J. R. Stat. Soc. Ser. C 55(1), 1–14 (2006)

    Article  Google Scholar 

  6. T. Leng, F. Li, L. Xiong, Q. Xiong, M. Zhu, Y. Chen, Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control 113, 107203 (2020)

    Article  CAS  Google Scholar 

  7. M. Kamruzzaman, D.W. Sun, G. ElMasry, P. Allen, Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 103, 130–136 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. L. Mamani-Linares, C. Gallo, D. Alomar, Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy. Meat Sci. 90(2), 378–385 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. A. Rohman, Y. Erwanto, Y.B.C. Man, Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Sci. 88(1), 91–95 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. H. Rahmania, A. Rohman, The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation. Meat Sci. 100, 301–305 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. A. Rady, A. Adedeji, Assessing different processed meats for adulterants using visible-near-infrared spectroscopy. Meat Sci. 136, 59–67 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. B. Kuswandi, K.A. Cendekiawan, N. Kristiningrum, M. Ahmad, Pork adulteration in commercial meatballs determined by chemometric analysis of NIR spectra. J. Food Meas. Charact. 9(3), 313–323 (2015)

    Article  Google Scholar 

  13. A. Rady, A. Adedeji, Application of hyperspectral imaging and machine learning methods to detect and quantify adulterants in minced meats. Food Anal. Methods 13(4), 970–981 (2020)

    Article  Google Scholar 

  14. B.M. Wise, N. Gallagher, R. Bro, J. Shaver, W. Windig, R.S. Koch, PLS Toolbox 4.0. (2007)

  15. Å. Rinnan, F. Van Den Berg, S.B. Engelsen, Review of the most common pre-processing techniques for near-infrared spectra. TrAC, Trends Anal. Chem. 28(10), 1201–1222 (2009)

    Article  CAS  Google Scholar 

  16. X. Fu, Y. Ying, H. Lu, H. Xu, H. Yu, FT-NIR diffuse reflectance spectroscopy for kiwifruit firmness detection. Sens. Instrum. Food Qual. Saf. 1(1), 29–35 (2007)

    Article  Google Scholar 

  17. J.M. Amigo, Practical issues of hyperspectral imaging analysis of solid dosage forms. Anal. Bioanal. Chem. 398(1), 93–109 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. G. Destefanis, M.T. Barge, A. Brugiapaglia, S. Tassone, The use of principal component analysis (PCA) to characterize beef. Meat Sci. 56(3), 255–259 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. M. Peyvasteh, A. Popov, A. Bykov, I. Meglinski, Meat freshness revealed by visible to near-infrared spectroscopy and principal component analysis. J. Phys. Commun. 4(9), 095011 (2020)

    Article  CAS  Google Scholar 

  20. C. Alamprese, M. Casale, N. Sinelli, S. Lanteri, E. Casiraghi, Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT-Food Sci. Technol. 53(1), 225–232 (2013)

    Article  CAS  Google Scholar 

  21. F. Pan, G. Song, X. Gan, Q. Gu, Consistent feature selection and its application to face recognition. J. Intell. Inf. Syst. 43(2), 307–321 (2014)

    Article  Google Scholar 

  22. A. Tharwat, T. Gaber, A. Ibrahim, A.E. Hassanien, Linear discriminant analysis: a detailed tutorial. AI Commun. 30(2), 169–190 (2017)

    Article  Google Scholar 

  23. K.H. Esbensen, B. Swarbrick, Multivariate Data Analysis, 6th edn. (IMPublising, Chichester, 2018)

    Google Scholar 

  24. Y. Hu, L. Zou, X. Huang, X. Lu, Detection and quantification of offal content in ground beef meat using vibrational spectroscopic-based chemometric analysis. Sci. Rep. 7(1), 1–9 (2017)

    CAS  Google Scholar 

  25. C. Alamprese, J.M. Amigo, E. Casiraghi, S.B. Engelsen, Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Sci. 121, 175–181 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. S. Wold, H. Martens, H. Wold, The Multivariate Calibration Problem in Chemistry Solved by the PLS Method. Matrix pencils (Springer, New York, 1983), pp. 286–293

    Google Scholar 

  27. L. Peng, H. Cheng, L.J. Wang, D. Zhu, Comparisons of the prediction results of soil properties based on fuzzy c-means clustering and expert knowledge from laboratory Visible–Near-Infrared reflectance spectroscopy data. Can. J. Soil Sci. 101(1), 33–44 (2020)

    Article  CAS  Google Scholar 

  28. N. Morsy, D.W. Sun, Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef. Meat Sci. 93(2), 292–302 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. M. Arab, N. Bidin, Z. Rizvi, S. Safie, M. Alsaedi, Comparison study of two commercial spectrometers for heavy metal analysis of laser induced breakdown spectroscopy (LIBS). Photonic Sens. 4(1), 63–69 (2014)

    Article  CAS  Google Scholar 

  30. J.K. Møller, C.E. Adamsen, L.H. Skibsted, Spectral characterisation of red pigment in Italian-type dry-cured ham: Increasing lipophilicity during processing and maturation. Eur. Food Res. Technol. 216(4), 290–296 (2003)

    Article  CAS  Google Scholar 

  31. J. Brøndum, L. Munck, P. Henckel, A. Karlsson, E. Tornberg, S.B. Engelsen, Prediction of water-holding capacity and composition of porcine meat by comparative spectroscopy. Meat Sci. 55(2), 177–185 (2000)

    Article  PubMed  Google Scholar 

  32. X. Tian, Y. Xu, Y. Peng, X. Tang, S. Ma, editors, Application of VIS-SW-NIR spectroscopy for detecting adulteration in fresh minced beef. 2013 Kansas City, Missouri, July 21-July 24, 2013; 2013: American Society of Agricultural and Biological Engineers.

  33. S. Andrés, I. Murray, E. Navajas, A. Fisher, N. Lambe, L. Bünger, Prediction of sensory characteristics of lamb meat samples by near infrared reflectance spectroscopy. Meat Sci. 76(3), 509–516 (2007)

    Article  PubMed  Google Scholar 

  34. J.S. Shenk, J.J. Workman Jr., M.O. Westerhaus, Application of NIR Spectroscopy to Agricultural Products. Handbook of Near-Infrared Analysis (CRC Press, Boca Raton, 2007), pp. 365–404

    Google Scholar 

  35. A. López-Maestresalas, K. Insausti, C. Jarén, C. Pérez-Roncal, O. Urrutia, M.J. Beriain, Detection of minced lamb and beef fraud using NIR spectroscopy. Food Control 98, 465–473 (2019)

    Article  CAS  Google Scholar 

  36. S.S. Sekulic, J. Wakeman, P. Doherty, P.A. Hailey, Automated system for the on-line monitoring of powder blending processes using near-infrared spectroscopy. Part II Qualitative approaches to blend evaluation. J. Pharm. Biomed. Anal. 17(8), 1285–1309 (1998)

    Article  CAS  PubMed  Google Scholar 

  37. M. Dhanoa, S. Lister, R. Sanderson, R. Barnes, The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. J. Near Infrared Spectrosc. 2(1), 43–47 (1994)

    Article  CAS  Google Scholar 

  38. P.Y. Sacré, C. De Bleye, P.F. Chavez, L. Netchacovitch, P. Hubert, E. Ziemons, Data processing of vibrational chemical imaging for pharmaceutical applications. J. Pharm. Biomed. Anal. 101, 123–140 (2014)

    Article  PubMed  CAS  Google Scholar 

  39. M. Zeaiter, J.M. Roger, V. Bellon-Maurel, Robustness of models developed by multivariate calibration. Part II: the influence of pre-processing methods. TrAC Trends Anal. Chem. 24(5), 437–445 (2005)

    Article  CAS  Google Scholar 

  40. M.A. Siddiqui, M.H.M. Khir, G. Witjaksono, A.S.M. Ghumman, M. Junaid, S.A. Magsi, Multivariate analysis coupled with M-SVM classification for lard adulteration detection in meat mixtures of beef, lamb, and chicken using FTIR spectroscopy. Foods 10(10), 2405 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  41. M. Khojastehnazhand, M.H. Khoshtaghaza, B. Mojaradi, M. Rezaei, M. Goodarzi, W. Saeys, Comparison of visible–near infrared and short wave infrared hyperspectral imaging for the evaluation of rainbow trout freshness. Food Res. Int. 56, 25–34 (2014)

    Article  CAS  Google Scholar 

  42. C. Pizarro, I. Esteban-Dı́ez, A.J. Nistal, J.M. González-Sáiz, Influence of data pre-processing on the quantitative determination of the ash content and lipids in roasted coffee by near infrared spectroscopy. Analytica Chim. Acta 509(2), 217–227 (2004)

    Article  CAS  Google Scholar 

  43. F. Zhu, S. Cheng, D. Wu, Y. He, Rapid discrimination of fish feeds brands based on visible and short-wave near-infrared spectroscopy. Food Bioprocess Technol. 4(4), 597–602 (2011)

    Article  CAS  Google Scholar 

  44. S.J. Dixon, R.G. Brereton, Comparison of performance of five common classifiers represented as boundary methods: euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure. Chemom. Intell. Lab. Syst. 95(1), 1–17 (2009)

    Article  CAS  Google Scholar 

  45. C.L. Morais, K.M. Lima, Principal component analysis with linear and quadratic discriminant analysis for identification of cancer samples based on mass spectrometry. J. Braz. Chem. Soc. 29, 472–481 (2018)

    CAS  Google Scholar 

  46. B. Kuswandi, F.K. Putri, A.A. Gani, M. Ahmad, Application of class-modelling techniques to infrared spectra for analysis of pork adulteration in beef jerkys. J. Food Sci. Technol. 52(12), 7655–7668 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Y. Fan, Y. Liao, F. Cheng, Predicting of intramuscular fat content in pork using near infrared spectroscopy and multivariate analysis. Int. J. Food Prop. 21(1), 1180–1189 (2018)

    Article  CAS  Google Scholar 

  48. Z. Keshavarzi, S.B. Banadkoki, M. Faizi, Y. Zolghadri, F.H. Shirazi, Comparison of transmission FTIR and ATR spectra for discrimination between beef and chicken meat and quantification of chicken in beef meat mixture using ATR-FTIR combined with chemometrics. J. Food Sci. Technol. 57(4), 1430–1438 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was done by laboratory of Electrical and computer Engineering Department. The authors thank the personnel of this laboratory for their friendly cooperation during the experiments.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Mahmoudi.

Ethics declarations

Conflict of interest

There is no potential conflict of interest between the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, A., Mahmoudi, A., Veladi, H. et al. Rapid identification and quantification of intramuscular fat adulteration in lamb meat with VIS–NIR spectroscopy and chemometrics methods. Food Measure 16, 2400–2410 (2022). https://doi.org/10.1007/s11694-022-01352-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01352-y

Keywords

Navigation