Skip to main content
Log in

Intermittent warming as an efficient postharvest treatment affects the enzymatic and non-enzymatic responses of pomegranate during cold storage

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Limited shelf life of pomegranate makes its cold storage necessary. On the other hand, it encounters chilling injury (CI) incidence at temperatures below 5 ºC. Intermittent warming (IW), known as one or more warming periods during cold storage, is a beneficial postharvest treatment for keeping fruit quality. Pomegranate ‘Rabab-e-Neyriz’ fruit were stored at 2 ± 0.5 °C (chilling temperature) and 90 ± 5% relative humidity (RH) for 70 days. IW was performed as one warming period by transferring the fruit to a warm room (1 day at 20 °C with 70% RH). The experimental design was factorial based on a complete randomized design. Experimental factors included 4 temporal points of interruption in storage, i.e., 15th, 25th, 35th or 45th days of storage; 2 levels of warming regime for each interruption date, i.e., warming and control; and 2 levels of sampling time, i.e., immediately after treatment or postponed until the end of the storage period. Treated fruit were compared to controls twice, immediately after treatment and at the end of the storage period. Warming on the 15th day of storage led to higher enzymatic antioxidant activity and phenolic content coincided with lower polyphenol oxidase (PPO) activity in the peel and, as a result, lower chilling injury (CI) damage to the treated fruit compared to control. It was concluded that a successful and commercially applicable method for postharvest cold storage of pomegranate could be the only one warming period prior to the incidence of irreversible damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.H. Mirdehghan, M. Rahemi, Iran J. Agric. Sci. 33, 75–80 (2002)

    Google Scholar 

  2. A.A. Kader, in Pomegranates: Ancient Roots to Modern Medicine, ed. by N.P. Seeram, R.N. Schulman, D. Heber (Taylor and Francis, USA, 2006), pp. 211–220

    Google Scholar 

  3. D. Valero, M. Serrano, Postharvest Biology and Technology for Preserving Fruit Quality (Taylor and Francis, USA, 2010), p. 104

    Google Scholar 

  4. S.H. Mirdehghan, M. Rahemi, S. Castillo, D. Martínez-Romero, M. Serrano, D. Valero, Postharvest Biol. Technol. 44, 26–33 (2007)

    CAS  Google Scholar 

  5. S.H. Mirdehghan, M. Rahemi, D. Martínez-Romero, F. Guillén, J.M. Valverde, P.J. Zapata, M. Serrano, D. Valero, Postharvest Biol. Technol. 44, 19–25 (2007)

    CAS  Google Scholar 

  6. M. Sayyari, M. Babalar, S. Kalantari, M. Serrano, D. Valero, Postharvest Biol. Technol. 53, 152–154 (2009)

    CAS  Google Scholar 

  7. M. Sayyari, D. Valero, M. Babalar, S. Kalantari, P.J. Zapata, M. Serrano, J. Agric. Food Chem. 58, 6804–6808 (2010)

    CAS  PubMed  Google Scholar 

  8. M. Sayyari, S. Castillo, D. Valero, H.M. Díaz-Mula, M. Serrano, Postharvest Biol. Technol. 60, 136–142 (2011)

    CAS  Google Scholar 

  9. R.A. Kluge, M.L.L. Jomori, A.P. Jacomino, M.C.D. Vitti, D.C.C. Vitti, Sci. Agric. 60, 729–734 (2003)

    Google Scholar 

  10. M. Schirra, E. Cohen, Postharvest Biol. Technol. 16, 63–69 (1999)

    CAS  Google Scholar 

  11. R.A. Kluge, R.F.F. Cantillano, A.B. Bilhalva, Rev. Bras. Agrociência. 3, 125–130 (1997)

    Google Scholar 

  12. J.P. Fernández-Trujillo, F. Artés, Food Res. Int. 30, 441–450 (1997)

    Google Scholar 

  13. L.-Q. Zhu, J. Zhou, S.-H. Zhu, Food Chem. 121, 165–170 (2010)

    CAS  Google Scholar 

  14. J. Ben Abda, N. Yahyaoui, M. Mars, S. Sdiri, A. Salvador-Perez, Acta Hortic. 877, 1433–1439 (2010)

    CAS  Google Scholar 

  15. F. Artés, J.A. Tudela, R. Villaescusa, Postharvest Biol. Technol. 18, 245–251 (2000)

    Google Scholar 

  16. U.A. Fischer, R. Carle, D.R. Kammerer, Food Chem. 127, 807–821 (2011)

    CAS  PubMed  Google Scholar 

  17. Y. Li, C. Guo, J. Yang, J. Wei, J. Xu, S. Cheng, Food Chem. 96, 254–260 (2006)

    CAS  Google Scholar 

  18. S. Lurie, in Postharvest Oxidative Stress in Horticultural Crops, ed. by D.M. Hodges (Food Products Press, New York, 2003), pp. 131–150

    Google Scholar 

  19. S. Lurie, E. Pesis, R. Ben-Arie, Postharvest Biol. Technol. 1, 119–125 (1991)

    CAS  Google Scholar 

  20. M.S. Aghdam, S. Bodbodak, Food Bioprocess Technol. 7, 37–53 (2014)

    CAS  Google Scholar 

  21. L. Sevillano, M.T. Sanchez-Ballesta, F. Romojaro, F.B. Flores, J. Sci. Food Agric. 89, 555–573 (2009)

    CAS  Google Scholar 

  22. R. Hajiboland, in Oxidative Damage to Plants: Antioxidant Networks and Signaling, ed. by P. By, Ahmad (Elsevier, USA, 2014), pp. 1–63

    Google Scholar 

  23. T.G. McCollum, R.E. McDonald, HortScience 26, 1191–1192 (1991)

    CAS  Google Scholar 

  24. R.L. Heath, L. Packer, Arch. Biochem. Biophys. 125, 189–198 (1968)

    CAS  PubMed  Google Scholar 

  25. M. Ozden, U. Demirel, A. Kahraman, Sci. Hortic. 119, 163–168 (2009)

    CAS  Google Scholar 

  26. C. Beauchamp, I. Fridovich, Anal. Biochem. 44, 276–287 (1971)

    CAS  PubMed  Google Scholar 

  27. R.S. Dhindsa, P. Plumb-Dhindsa, T.A. Thorpe, J. Exp. Bot. 32, 93–101 (1981)

    CAS  Google Scholar 

  28. B. Chance, A.C. Maehly, Methods Enzymol. 2, 764–775 (1955)

    Google Scholar 

  29. Y. Nakano, K. Asada, Plant Cell Physiol. 22, 867–880 (1981)

    CAS  Google Scholar 

  30. J.A. Kim, W.S. Jung, S.C. Chun, C.Y. Yu, K.H. Ma, J.G. Gwag, I.M. Chung, Eur. Food Res. Technol. 224, 259–270 (2006)

    CAS  Google Scholar 

  31. M.Y. Coseteng, C.Y. Lee, J. Food Sci. 52, 985–989 (1987)

    CAS  Google Scholar 

  32. E.M. González, B. de Ancos, M.P. Cano, J. Agric. Food Chem. 47, 4068–4072 (1999)

    PubMed  Google Scholar 

  33. O. Nukuntornprakit, K. Chanjirakul, W.G. van Doorn, J. Siriphanich, Postharvest Biol. Technol. 99, 20–26 (2015)

    CAS  Google Scholar 

  34. L. Taghipour, M. Rahemi, P. Assar, J. Agric. Sci. (2015) https://doi.org/10.2298/JAS1504465T

    Article  Google Scholar 

  35. P.S. Campos, V. Quartin, J. Cochicho Ramalho, M.A. Nunes, J. Plant Physiol. 160, 283–292 (2003)

    CAS  PubMed  Google Scholar 

  36. M.D.C. Antunes, E.M. Sfakiotakis, Food Chem. 110, 891–896 (2008)

    CAS  PubMed  Google Scholar 

  37. J.M. Sala, Postharvest Biol. Technol. 13, 255–261 (1998)

    CAS  Google Scholar 

  38. D.M. Hodges, G.E. Lester, K.D. Munro, P.T.A. Toivonen, HortScience. 39, 924 (2004)

    CAS  Google Scholar 

  39. M. Bassal, M. El-Hamahmy, Postharvest Biol. Technol. 60, 186–191 (2011)

    CAS  Google Scholar 

  40. Y. Imahori, M. Takemura, J. Bai, Postharvest Biol. Technol. 49, 54–60 (2008)

    CAS  Google Scholar 

  41. Z. Ding, S. Tian, X. Zheng, Z. Zhou, Y. Xu, Physiol. Plant. 130, 112–121 (2007)

    CAS  Google Scholar 

  42. G.O. Pérez-Tello, B.A. Silva-Espinoza, I. Vargas-Arispuro, B.O. Briceño-Torres, M.A. Martinez-Tellez, Biochem. Biophys. Res. Commun. 287, 846–851 (2001)

    PubMed  Google Scholar 

  43. D. Weerahewa, N.K.B. Adikaram, Cey. J. Sci. (Biol. Sci.). 34, 7–20 (2005)

    Google Scholar 

  44. Y. Zhou, J.M. Dahler, S.J.R. Underhill, R.B.H. Wills, Food Chem. 80, 565–572 (2003)

    CAS  Google Scholar 

  45. S. Chidtragool, S. Ketsa, J. Bowen, I.B. Ferguson, W.G. van Doorn, Postharvest Biol. Technol. 62, 59–63 (2011)

    CAS  Google Scholar 

  46. D. Rinaldo, D. Mbéguié-A-Mbéguié, B. Fils-Lycaon, Trends Food Sci. Technol. 21, 599–606 (2010)

    CAS  Google Scholar 

  47. M.T. Lafuente, L. Zacarias, M.A. Martínez-Téllez, M.T. Sanchez-Ballesta, E. Dupille, J. Agric. Food Chem. 49, 6020–6025 (2001)

    CAS  PubMed  Google Scholar 

  48. M.T. Sanchez-Ballesta, L. Zacarias, A. Granell, M.T. Lafuente, J. Agric. Food Chem. 48, 2726–2731 (2000)

    CAS  PubMed  Google Scholar 

  49. M. Gundogdu, H. Yilmaz, Sci. Hortic. 143, 38–42 (2012)

    CAS  Google Scholar 

  50. T.B.T. Nguyen, S. Ketsa, W.G. van Doorn, Postharvest Biol. Technol. 30, 187–193 (2003)

    CAS  Google Scholar 

  51. R. Ben-Arie, E. Or, J. Am. Soc. Hortic. Sci. 111, 395–399 (1986)

    Google Scholar 

  52. X.H. Liu, J. Cai, S. Huo, H.D. Xu, Tianjin Agric. Sci. 1, 30–31 (1995)

    Google Scholar 

  53. Y. Zhang, R. Zhang, Agric. Sci. China 7, 65–73 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Taghipour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghipour, L., Rahemi, M., Assar, P. et al. Intermittent warming as an efficient postharvest treatment affects the enzymatic and non-enzymatic responses of pomegranate during cold storage. Food Measure 15, 12–22 (2021). https://doi.org/10.1007/s11694-020-00607-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00607-w

Keywords

Navigation