Skip to main content
Log in

Non-destructive analysis of caviar compositions using low-field nuclear magnetic resonance technique

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Caviar is one of the most popular and expensive animal products in world trade. Water, fat and protein contents are key chemical compositions, and account for the majority of mass of caviar. In this study, the performance of a rapid, accurate analysis of water, fat and protein analysis was reported in caviar and raw sturgeon eggs through low-field 1H nuclear magnetic resonance (LF-NMR) relaxometry combined with partial least-squares regression (PLSR) models. For caviar, the correlation coefficients (Rcv 2) of water, fat and protein were 0.9930, 0.9698 and 0.9783 with root mean square error of cross-validation (RMSECV) of 0.0760, 0.0308 and 0.0566, respectively. For raw sturgeon eggs the Rcv 2 were 0.9932, 0.9592 and 0.9770, and the RMSECV were 0.1098, 0.0878 and 0.0917, respectively. Besides, a LF-NMR and principal component analysis (PCA) combined method also was developed to discriminate the caviar and raw sturgeon eggs based on the hydrogen protons originating from different environments with various salt concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.E. Bledsoe, C.D. Bledsoe, B. Rasco, Crit. Rev. Food Sci. Nutr. 43, 317–356 (2003)

    Article  CAS  Google Scholar 

  2. M.A. Al-Holy, B.A. Rasco, J. Food Biochem. 30, 422–428 (2006)

    Article  CAS  Google Scholar 

  3. N. Shirai, T. Higuchi, H. Suzuki, Food Chem. 94, 61–67 (2006)

    Article  CAS  Google Scholar 

  4. K. Al-Sayed Mahmoud, M. Linder, J. Fanni, M. Parmentier, Process Biochem. 43, 376–383 (2008)

    Article  CAS  Google Scholar 

  5. D.F. Barbin, G. ElMasry, D.W. Sun, P. Allen, Food Chem. 138, 1162–1171 (2013)

    Article  CAS  Google Scholar 

  6. U. Celik, C. Altinelataman, T. Dincer, D. Acarli, Turk J. Fish. Aquat. Sci. 12 (2012)

  7. A. Fassio, D. Cozzolino, Ind. Crop. Prod. 20, 321–329 (2004)

    Article  CAS  Google Scholar 

  8. F. Pi, H. Shinzawa, Y. Ozaki, D. Han, Int. Dairy J. 19, 624–629 (2009)

    Article  CAS  Google Scholar 

  9. M. Kamruzzaman, G. ElMasry, D.-W. Sun, P. Allen, Innov. Food Sci. Emerg. 16, 218–226 (2012)

    Article  CAS  Google Scholar 

  10. A.D. Mitchell, P.C. Wangb, T.H. Elsasser, J. Sci. Food Agric. 56, 265–276 (1991)

    Article  CAS  Google Scholar 

  11. H.T. Pedersen, L. Munck, S.B. Engelsen, J. Am. Oil Chem. Soc. 77, 1069–1077 (2000)

    Article  CAS  Google Scholar 

  12. G.H. Sørland, P.M. Larsen, F. Lundby, A.-P. Rudi, T. Guiheneuf, Meat Sci. 66, 543–550 (2004)

    Article  Google Scholar 

  13. E. Veliyulin, C. van der Zwaag, W. Burk, U. Erikson, J. Sci. Food Agric. 85, 1299–1304 (2005)

    Article  CAS  Google Scholar 

  14. P.J. Horn, P. Neogi, X. Tombokan, S. Ghosh, B.T. Campbell, K.D. Chapman, J. Am. Oil Chem. Soc. 88, 1521–1529 (2011)

    Article  CAS  Google Scholar 

  15. F.M.V. Pereira, J.C. Hashimoto, J.A.L. Pallone, L.A. Colnago, Food Anal. Methods 8, 122–125 (2014)

    Article  Google Scholar 

  16. M.F. Marcone, S. Wang, W. Albabish, S. Nie, D. Somnarain, A. Hill, Food Res. Int. 51, 729–747 (2013)

    Article  CAS  Google Scholar 

  17. F.M.V. Pereira, L.A. Colnago, Food Anal. Methods 5, 1349–1353 (2012)

    Article  Google Scholar 

  18. F.M. Verbi Pereira, A.P. Rebellato, J.A. Lima Pallone, L.A. Colnago, Food Control 48, 62–66 (2015)

    Article  CAS  Google Scholar 

  19. G. Elmasry, J.P. Wold, J. Agric. Food Chem 56, 7672–7677 (2008)

    Article  CAS  Google Scholar 

  20. P.F.d.O. Ramos, I.B. de Toledo, C.M. Nogueira, E.H. Novotny, A.J.M. Vieira, R.B.d.V. Azeredo, Chemom. Intell. Lab. Syst. 99, 121–126 (2009)

    Article  CAS  Google Scholar 

  21. X. Zheng, Y. Jin, Y. Chi, M. Ni, Energy Fuels 27, 5787–5792 (2013)

    Article  CAS  Google Scholar 

  22. Z. Talebpour, S. Maesum, M. Jalali-Heravi, M. Shamsipur, Anal. Sci. 19, 1079–1082 (2003)

    Article  CAS  Google Scholar 

  23. C.K. McDonnell, P. Allen, E. Duggan, J.M. Arimi, E. Casey, G. Duane, J.G. Lyng, Meat Sci. 95, 51–58 (2013)

    Article  CAS  Google Scholar 

  24. L. Munck, L. Nørgaard, S.B. Engelsen, R. Bro, C.A. Andersson, Chemometr. Intell. Lab. 44, 31–60 (1998)

    Article  CAS  Google Scholar 

  25. Y. Miyamae, Y. Yamakawa, M. Kawabata, Y. Ozaki, Anal. Sci. 28, 1159–1164 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (31501561, 31401520, 31401519), the National Key Scientific Instrument and Equipment Development Project of China (2013YQ17046307), the National Key Technology Research and Development Program of China in 12th Five-Year Plan (2014BAD04B09), the Public Science and Technology Research Funds Project of Ocean (201505029), and Cultivation Plan for Youth Agricultural Science and Technology Innovative Talents of Liaoning Province (2015002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shasha Cheng or Mingqian Tan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Cheng, S., Song, Y. et al. Non-destructive analysis of caviar compositions using low-field nuclear magnetic resonance technique. Food Measure 11, 621–628 (2017). https://doi.org/10.1007/s11694-016-9431-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-016-9431-z

Keywords

Navigation