Skip to main content
Log in

Characterization and quantification of engineered nanoparticles in food by epithermal instrumental neutron activation analysis and electron microscopy

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Engineered nanoparticles (NPs) have increasingly been used in various areas including agriculture and food packaging, which may potentially cause contamination in food products. In this study, a combination of analytical techniques was used to detect, characterize, and quantify engineered NPs (cerium (IV) oxide (CeO2), silica (SiO2) NPs, and their mixture) in food matrices. A series of concentrations of CeO2, SiO2, and their mixtures from 0 to 0.75 wt% were mixed in soybean powders. The presence of engineered NPs was investigated using transmission electron microscopy and scanning electron microscopy coupled with energy dispersive spectroscopy. The average size of CeO2 and SiO2 was 28.5 and 30.5 nm in diameter, respectively. CeO2 NPs were irregular octahedral and cubic in shape, while SiO2 NPs were spherical. The concentration of NPs in soybean powders was analyzed by epithermal instrumental neutron activation analysis (EINAA). Calibration curves were plotted for quantification of NPs in soybean powders (R 2 = 0.996 and 0.994 for CeO2, SiO2 NPs in soybean powders, respectively; R 2 = 0.995 and 0.997 for CeO2 and SiO2 NP in a mixture in soybean powders, respectively). The study of the detection limit (DL) demonstrates that at 99 % confidence interval, EINAA can detect both NPs at 0.1 wt% in soybean powders. Satisfactory recoveries were obtained for samples with a concentration at and higher than the DL (86.2–104.7 % for CeO2 NPs and 85.7–95.2 % for SiO2 NPs; 87.5–101.3 and 85.6–93.5 % for CeO2 and SiO2 NPs in a mixture in soybean powders, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.A. Magnuson, T.S. Jonaitis, J.W. Card, J Food Sci 76, R126 (2011)

    Article  CAS  Google Scholar 

  2. N. Sozer, J.L. Kokini, Trends Biotechnol 27, 82 (2009)

    Article  CAS  Google Scholar 

  3. G.A. Silva, Surg Neurol 61, 216 (2004)

    Article  Google Scholar 

  4. K. Tiede, A.B.A. Boxall, S.P. Tear, J. Lewis, H. David, M. Hassellöv, Food Addit Contam 25, 795 (2008)

    Article  CAS  Google Scholar 

  5. J.F.D. Lima, R.F. Martins, C.R. Neri, O.A. Serra, Appl Surf Sci 255, 9006 (2009)

    Google Scholar 

  6. A. Trovarelli, C. de Leitenburg, M. Boaro, G. Dolcetti, Catal Today 50, 353 (1999)

    Article  CAS  Google Scholar 

  7. J.A. Hernandez-Viezcas et al., ACS Nano 7, 1415 (2013)

    Article  CAS  Google Scholar 

  8. M.L. LÓPez-Moreno, G. De La Rosa, J.A. HernÁNdez-Viezcas, H. Castillo-Michel, C.E. Botez, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Environ Sci Technol 44, 7315 (2010)

    Article  Google Scholar 

  9. S. Karra, M. Zhang, W. Gorski, Anal Chem 85, 1208 (2012)

    Article  Google Scholar 

  10. W. Han, Y. Yu, N. Li, L. Wang, Chin Sci Bull 56, 1216 (2011)

    Article  Google Scholar 

  11. W. Tan, K. Wang, X. He, X.J. Zhao, T. Drake, L. Wang, R.P. Bagwe, Med Res Rev 24, 621 (2004)

    Article  CAS  Google Scholar 

  12. T.V. Duncan, J Colloid Interface Sci 363, 1 (2011)

    Article  CAS  Google Scholar 

  13. G. Brumfiel, Nature 424, 246 (2003)

    Article  CAS  Google Scholar 

  14. D. Lin, B. Xing, Environ Pollut 150, 243 (2007)

    Article  CAS  Google Scholar 

  15. M.C. Roco, Environ Sci Technol 39, 106A (2005)

    Article  CAS  Google Scholar 

  16. R. F. Service, Science 290, 1526 (2000)

    Article  Google Scholar 

  17. J.W. Card, D.C. Zeldin, J.C. Bonner, E.R. Nestmann, Am J Physiol 295, L400 (2008)

    Article  CAS  Google Scholar 

  18. L.K. Limbach, P. Wick, P. Manser, R.N. Grass, A. Bruinink, W.J. Stark, Environ Sci Technol 41, 4158 (2007)

    Article  CAS  Google Scholar 

  19. W. Lin, Y.-W. Huang, X.-D. Zhou, Y. Ma, Toxicol Appl Pharmacol 217, 252 (2006)

    Article  CAS  Google Scholar 

  20. F. Torney, B.G. Trewyn, V.S.Y. Lin, K. Wang, Nat Nano 2, 295 (2007)

    Article  CAS  Google Scholar 

  21. M.L. López-Moreno, G. de la Rosa, J.A. Hernández-Viezcas, J.R. Peralta-Videa, J.L. Gardea-Torresdey, J Agric Food Chem 58, 3689 (2010)

    Article  Google Scholar 

  22. K.V. Hoecke et al., Environ Sci Technol 43, 4537 (2009)

    Article  Google Scholar 

  23. R.R. Rao, J. Holzbecher, A. Chatt, Fresenius’ J Anal Chem 352, 53 (1995)

    Article  CAS  Google Scholar 

  24. R. Acharya, A.D. Shinde, S. Jeyakumar, M.K. Das, A.V.R. Reddy, J Radioanal Nuclear Chem 298, 449 (2013)

    Article  CAS  Google Scholar 

  25. E.L. Geoffrey, Mineral Mag 51, 3 (1987)

    Article  Google Scholar 

  26. R.F. Egerton, Physical principles of electron microscopy: an introduction to TEM, SEM, and AEM (Springer, New York, 2005)

    Book  Google Scholar 

  27. M.D. Glascock, W.Z. Than, W.D. Ehmann, J Radioanal Nuclear Chem 92, 379 (1985)

    Article  CAS  Google Scholar 

  28. D.C. Harris, Quantitative chemical analysis, 7th edn. (W. H. Freeman and Company, New York, 2007)

    Google Scholar 

  29. Z.L. Wang, X. Feng, J Phys Chem B 107, 13563 (2003)

    CAS  Google Scholar 

  30. R.K. Hailstone, A.G. DiFrancesco, J.G. Leong, T.D. Allston, K.J. Reed, J Phys Chem C 113, 15155 (2009)

    Article  CAS  Google Scholar 

  31. S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin, Cryst Growth Des 7, 950 (2007)

    Article  CAS  Google Scholar 

  32. J.J. Guo, J.A. Lewis, J Am Ceram Soc 82, 2345 (1999)

    Article  CAS  Google Scholar 

  33. X. Liu, G. Chen, C. Su, J Colloid and Interface Sci 363, 84 (2011)

    Article  CAS  Google Scholar 

  34. J.F. Banfield, S.A. Welch, H. Zhang, T.T. Ebert, R.L. Penn, Science 289, 751 (2000)

    Article  CAS  Google Scholar 

  35. O. Choi, T.E. Clevenger, B. Deng, R.Y. Surampalli, L. Ross Jr, Z. Hu, Water Res 43, 1879 (2009)

    Article  CAS  Google Scholar 

  36. P. Campestrini, H. Terryn, A. Hovestad, J.H.W. de Wit, Surf Coat Technol 176, 365 (2004)

    Article  CAS  Google Scholar 

  37. B. Prieto-Simón, G.S. Armatas, P.J. Pomonis, C.G. Nanos, M.I. Prodromidis, Chem Mater 16, 1026 (2004)

    Article  Google Scholar 

  38. D.E. Newbury, Scanning 31, 91 (2009)

    Article  CAS  Google Scholar 

  39. X. Song, R. Li, H. Li, Z. Hu, A. Mustapha, M. Lin, Food Bioprocess Technol 1, 41–48 (2013)

    Google Scholar 

  40. N.K. Aras, O.Y. Ataman, Trace element analysis of food and diet (Royal Society of Chemistry, New York, 2006)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance from the Electron Microscopy Core facility at the University of Missouri in electron microscopy analysis. This research was supported by the USDA NIFA Nanotechnology Program Project No. 2011-67021-30391 and the University of Missouri Research Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengshi Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Li, H., Hu, Z. et al. Characterization and quantification of engineered nanoparticles in food by epithermal instrumental neutron activation analysis and electron microscopy. Food Measure 8, 207–212 (2014). https://doi.org/10.1007/s11694-014-9181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-014-9181-8

Keywords

Navigation