Skip to main content
Log in

Morphological Adaptations to Migration in Birds

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Migratory flight performance has direct or carry-over effects on fitness. Therefore, selection is expected to act on minimizing the costs of migratory flight, which increases with the distance covered. Aerodynamic theory predicts how morphological adaptations improve flight performance. These predictions have rarely been tested in comparative analyses that account for scaling and phylogenetic effects. We amassed a unique dataset of 149 European bird species and 10 morphological traits. Mass-adjusted aspect ratio increased, while mass-adjusted heart weight and wing loading decreased with increasing migration distance. These results were robust to whether the analyses were based on the entire species pool or limited to passerines or migrants. Our findings indicate that selection due to migration acts on wing traits that reduce the energetic cost of transportation to increase the flight range. Consequently, the demands for high ‘exercise organ’ performance might be low, and hence such energetically expensive tissues are not associated (pectoral muscle) or are inversely associated (heart) with migration distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alerstam, T., Hedenström, A., & Åkesson, S. (2003). Long-distance migration: Evolution and determinants. Oikos, 103, 247–260.

    Article  Google Scholar 

  • Alerstam, T., Rosén, M., Bäckman, J., Ericson, P. G. P., & Hellgren, O. (2007). Flight speeds among bird species: Allometric and phylogenetic effects. PLoS Biology, 5, e197.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Altizer, S., Bartel, R., & Han, B. A. (2011). Animal migration and infectious disease risk. Science, 331, 296–302.

    Article  PubMed  CAS  Google Scholar 

  • Battley, P. F., Piersma, T., Dietz, M. W., Tang, S., Dekinga, A., & Hulsman, K. (2000). Empirical evidence for differential organ reductions during trans-oceanic bird flight. Proceedings of the Royal Society of London B, 267, 191–195.

    Article  CAS  Google Scholar 

  • Bauer, S., & Hoye, B. J. (2014). Migratory animals couple biodiversity and ecosystem functioning worldwide. Science, 344, 1242552.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, P. M., & Owens, I. P. F. (2002). Evolutionary ecology of birds. Life histories, mating systems and extinction. New York, NY: Oxford University Press.

    Google Scholar 

  • BirdLife International, & NatureServe. (2012). Bird species distribution maps of the world, version 2.0. Cambridge, UK and Arlington, TX: BirdLife International and NatureServe.

    Google Scholar 

  • Bishop, C. M. (1997). Heart mass and the maximum cardiac output of birds and mammals: Implications for estimating the maximum aerobic power input of flying animals. Philosophical Transactions of the Royal Society of London B, 352, 447–456.

    Article  Google Scholar 

  • Bishop, C. M., & Butler, P. J. (1995). Physiological modelling of oxygen consumption in birds during flight. Journal of Experimental Biology, 198, 2153–2163.

    PubMed  Google Scholar 

  • Bivand, R., & Rundel, C. (2013). rgeos: Interface to geometry engineopen source (GEOS). R package version 0.3-2. http://CRAN.R-project.org/package=rgeos.

  • Bowlin, M. S., Bisson, I.-A., Shamoun-Baranes, J., Reichard, J. D., Sapir, N., Marra, P. P., et al. (2010). Grand challenges in migration biology. Integrative and Comparative Biology, 50, 261–279.

    Article  PubMed  Google Scholar 

  • Bruderer, B., Peter, D., Boldt, A., & Liechti, F. (2010). Wing-beat characteristics of birds recorded with tracking radar and cine camera. Ibis, 152, 272–291.

    Article  Google Scholar 

  • Calmaestra, R. G., & Moreno, E. (2000). Ecomorphological patterns related to migration: A comparative osteological study with passerines. Journal of Zoology, 252, 495–501.

    Article  Google Scholar 

  • Calmaestra, R. G., & Moreno, E. (2001). A phylogenetically-based analysis on the relationship between wing morphology and migratory behaviour in passeriformes. Ardea, 89, 407–416.

    Google Scholar 

  • Costantini, D., Cardinale, M., & Carere, C. (2007). Oxidative damage and anti-oxidant capacity in two migratory bird species at a stop-over site. Comparative Biochemistry and Physiology C, 144, 363–371.

    Google Scholar 

  • Dingle, H. (2006). Animal migration: Is there a common migratory syndrome? Journal of Ornithology, 147, 212–220.

    Article  Google Scholar 

  • Fiedler, W. (2005). Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Annals of the New York Academy of Sciences, 1046, 253–263.

    Article  PubMed  Google Scholar 

  • Freckleton, R. F., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. American Naturalist, 160, 712–726.

    Article  PubMed  CAS  Google Scholar 

  • Garamszegi, L. Z., Møller, A. P., & Erritzøe, J. (2002). Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proceedings of the Royal Society of London B, 269, 961–967.

    Article  Google Scholar 

  • Harvey, P. H. (2000). Why and how phylogenetic relationships should be incorporated into studies of scaling. In J. H. Brown & G. B. West (Eds.), Scaling in biology. New York, NY: Oxford University Press.

    Google Scholar 

  • Hedenström, A. (1993). Migration by soaring or flapping flight in birds: The relative importance of energy cost and speed. Philosophical Transactions of the Royal Society of London B, 342, 353–361.

    Article  Google Scholar 

  • Hedenström, A. (2008). Adaptations to migration in birds: Behavioural strategies, morphology and scaling effects. Philosophical Transactions of the Royal Society of London B, 363, 287–299.

    Article  Google Scholar 

  • Jenni, L., Jenni-Eiermann, S., Spina, F., & Schwabl, H. (2000). Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 278, R1182–R1189.

    PubMed  CAS  Google Scholar 

  • Jones, M. R., & Witt, C. C. (2014). Migrate small, sound big: Functional constraints on body size promote tracheal elongation in cranes. Journal of Evolutionary Biology, 27, 1256–1264.

    Article  PubMed  CAS  Google Scholar 

  • Kaboli, M., Aliabadian, M., Guillaumet, A., Roselaar, C. S., & Prodon, R. (2007). Ecomorphology of the wheatears (genus Oenanthe). Ibis, 149, 792–805.

    Article  Google Scholar 

  • Klaassen, M. (1996). Metabolic constraints on long-distance migration in birds. Journal of Experimental Biology, 199, 57–64.

    PubMed  Google Scholar 

  • Klaassen, R. H., Hake, M., Strandberg, R., Koks, B. J., Trierweiler, C., Exo, K.-M., et al. (2014). When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. Journal of Animal Ecology, 83, 176–184.

    Article  PubMed  Google Scholar 

  • Konarzewski, M., & Diamond, J. (1995). Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution, 49, 1239–1248.

    Article  Google Scholar 

  • Leisler, B., & Winkler, H. (2003). Morphological consequences of migration in passerines. In P. Berthold, E. Gwinner, & E. Sonnenschein (Eds.), Avian migration (pp. 175–186). Heidelberg, Germany: Springer.

    Chapter  Google Scholar 

  • Lindhe Norberg, U. M. (2002). Structure, form, and function of flight in engineering and the living world. Journal of Morphology, 252, 52–81.

    Article  PubMed  Google Scholar 

  • Lockwood, R., Swaddle, J. P., & Rayner, J. M. V. (1998). Avian wingtip shape reconsidered: Wingtip shape indices and morphological adaptations to migration. Journal of Avian Biology, 29, 273–292.

    Article  Google Scholar 

  • Marchetti, K., Price, T., & Richman, A. (1995). Correlates of wing morphology with foraging behaviour and migration distance in the genus Phylloscopus. Journal of Avian Biology, 26, 177–181.

    Article  Google Scholar 

  • Martins, E. P., & Hansen, T. F. (1997). Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist, 149, 646–667.

    Article  Google Scholar 

  • Møller, A. P., & Birkhead, T. R. (1994). The evolution of plumage brightness in birds is related to extrapair paternity. Evolution, 48, 1089–1100.

    Article  Google Scholar 

  • Møller, A. P., Erritzøe, J., & Garamszegi, L. Z. (2005). Covariation between brain size and immunity in birds: Implications for brain size evolution. Journal of Evolutionary Biology, 18, 223–237.

    Article  PubMed  Google Scholar 

  • Møller, A. P., Rubolini, D., & Lehikoinen, E. (2008). Populations of migratory bird species that did not show a phenological response to climate change are declining. Proceedings of the National Academy of Sciences of the USA, 105, 16195–16200.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mönkkönen, M. (1992). Life history traits of palaearctic and nearctic migrant passerines. Ornis Fennica, 69, 161–172.

    Google Scholar 

  • Mönkkönen, M. (1995). Do migrant birds have more pointed wings?: A comparative study. Evolutionary Ecology, 9, 520–528.

    Article  Google Scholar 

  • Mulvihill, R. S., & Chandler, C. R. (1990). The relationship between wing shape and differential migration in the Dark-eyed Junco. Auk, 107, 490–499.

    Google Scholar 

  • Newton, I. (2004). Population limitation in migrants. Ibis, 146, 197–226.

    Article  Google Scholar 

  • Norberg, U. M. (1990). Vertebrate flight: Mechanisms, physiology, morphology, ecology and evolution. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Norberg, U. M. (1994). Wing design, flight performance, and habitat use in bats. In P. C. Wainwright & S. M. Reilly (Eds.), Ecological morphology (pp. 205–239). Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Orme, C. D. L., Freckleton, R. P., Thomas, G. H., Petzoldt, T., & Fritz, S. A. (2011). caper: Comparative analyses of phylogenetics and evolution in R. R package version 0.5.2. http://CRAN.R-project.org/package=caper.

  • Oufiero, C. E., Meredith, R. W., Jugo, K. N., Tran, P., Chappell, M. A., Springer, M. S., et al. (2014). The evolution of the sexually selected sword in Xiphophorus does not compromise aerobic locomotor performance. Evolution, 68, 1806–1823.

    Article  PubMed  Google Scholar 

  • Pagel, M. (1997). Inferring evolutionary processes from phylogenies. Zoologica Scripta, 26, 331–348.

    Article  Google Scholar 

  • Pagel, M. (1999). The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology, 48, 612–622.

    Article  Google Scholar 

  • Pap, P. L., Osváth, G., Sándor, K., Vincze, O., Bărbos, L., Marton, A., et al. (2015). Interspecific variation in the structural properties of flight feathers in birds indicates adaptation to flight requirements and habitat. Functional Ecology, 29, 746–757. Retrieved from http://doi.wiley.com/10.1111/1365-2435.12419.

  • Pennycuick, C. J. (1998). Computer simulation of fat and muscle burn in long-distance bird migration. Journal of Theoretical Biology, 191, 47–61.

    Article  PubMed  Google Scholar 

  • Pennycuick, C. J. (2008). Modelling the flying bird. London, UK: Academic Press.

    Google Scholar 

  • Piersma, T., & Lindström, Å. (1997). Rapid reversible changes in organ size as a component of adaptive behaviour. Trends in Ecology & Evolution, 12, 134–138.

    Article  CAS  Google Scholar 

  • Piersma, T., Pérez-Tris, J., Mouritsen, H., Bauchinger, U., & Bairlein, F. (2005). Is there a “migratory syndrome” common to all migrant birds? Annals of the New York Academy of Sciences, 1046, 282–293.

    Article  PubMed  Google Scholar 

  • R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria. http://www.R-project.org/: R Foundation for Statistical Computing.

  • Rayner, J. M. V. (1988). Form and function in avian flight. In R. F. Johnston (Ed.), Current Ornithology (Vol. 5, pp. 1–66). New York, NY: Plenum Press.

    Chapter  Google Scholar 

  • Rayner, J. M. V. (1990). The mechanics of flight and bird migration performance. In E. Gwinner (Ed.), Bird migration. Psyiology and ecophysiology (pp. 283–299). Heidelberg, Germany: Springer.

    Chapter  Google Scholar 

  • Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.

    Article  Google Scholar 

  • Shaffer, S. A., Tremblay, Y., Weimerskirch, H., Scott, D., Thompson, D. R., Sagar, P. M., et al. (2006). Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proceedings of the National Academy of Sciences of the USA, 103, 12799–12802.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2008). Aerodynamics of low Reynolds number flyers. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Sol, D., Lefebvre, L., & Rodríguez-Teijeiro, J. D. (2005). Brain size, innovative propensity and migratory behaviour in temperate Palaearctic birds. Proceedings of the Royal Society of London B, 272, 1433–1441.

    Article  Google Scholar 

  • Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., & Araujo, M. B. (2011). Consequences of climate change on the tree of life in Europe. Nature, 470, 531–534.

    Article  PubMed  CAS  Google Scholar 

  • Videler, J. J. (2005). Avian flight. New York, NY: Oxford University Press.

    Google Scholar 

  • Voelker, G. (2001). Morphological correlates of migratory distance and flight display in the avian genus Anthus. Biological Journal of the Linnean Society, 73, 425–435.

    Article  Google Scholar 

  • Wainwright, P. C., & Reilly, S. M. (Eds.). (1994). Ecological morphology: Integrative organismal biology. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Wang, X., McGowan, A. J., & Dyke, G. J. (2011). Avian wing proportions and flight styles: First step towards predicting the flight modes of Mesozoic birds. PLoS One, 6, e28672.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Webster, M. S., Peter, P., Haig, S. M., Bensch, S., & Holmes, R. T. (2002). Links between worlds: Unraveling migratory connectivity. Trends in Ecology & Evolution, 17, 76–83.

    Article  Google Scholar 

  • Wiersma, P., Nowak, B., & Williams, J. B. (2012). Small organ size contributes to the slow pace of life in tropical birds. Journal of Experimental Biology, 215, 1662–1669.

    Article  PubMed  Google Scholar 

  • Winkler, H., & Leisler, B. (1992). On the ecomorphology of migrants. Ibis, 134(S1), 21–28.

    Google Scholar 

  • Withers, P. C. (1981). An aerodynamic analysis of bird wings as fixed aerofoils. Journal of Experimental Biology, 90, 143–162.

    Google Scholar 

  • Wolak, M. E., Fairbairn, D. J., & Paulsen, Y. R. (2011). Guidelines for estimating repeatability. Methods in Ecology and Evolution, 3, 129–137.

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the help during fieldwork by Lőrinc Bărbos, Attila Marton, Krisztina Sándor and Judit Veres-Szászka, the numerous bird carcasses provided by the members of the ‘Milvus Group’ Bird and Nature Protection Association, the Museum of Zoology of Babeş-Bolyai University and Costică Adam. László Zsolt Garamszegi kindly aided with statistical analyses and Jácint Tökölyi with the calculation of migration distances. We thank the administration of the ‘Alexandru Borza’ Botanical Garden of Cluj Napoca for the permission to capture birds. Two anonymous reviewers provided constructive criticism. This work was licensed by the Romanian Academy of Sciences and adhered to recommended practices for the ringing, measuring, and sampling of wild birds for research purposes. Logistics and data collection between 2010 and 2013 was financed by a CNCSIS Grant (PN II. RU TE 291/2010) of the Romanian Ministry of Education and Research. CIV and OV were supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 ‘National Excellence Program’. During writing, CIV was financed by the Postdoctoral Fellowship Programme and PLP by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csongor I. Vágási.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11692_2015_9349_MOESM1_ESM.docx

ESM 1 The ESM provides (1) the R code used to compute migration distance from distribution maps, (2) the measurement, calculation and repeatability of wing morphology variables, (3) the usage of the scaling function, (4) the phylogenetic hypothesis, (5) the caption for the ESM2 file containing the entire dataset, and (6) the matrix of pairwise correlations between morphological traits (DOCX 58 kb)

ESM 2 The entire dataset (.xlsx) with legend (XLSX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vágási, C.I., Pap, P.L., Vincze, O. et al. Morphological Adaptations to Migration in Birds. Evol Biol 43, 48–59 (2016). https://doi.org/10.1007/s11692-015-9349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9349-0

Keywords

Navigation