Skip to main content
Log in

The Evolution of Wing Shape in Ornamented-Winged Damselflies (Calopterygidae, Odonata)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Flight has conferred an extraordinary advantage to some groups of animals. Wing shape is directly related to flight performance and evolves in response to multiple selective pressures. In some species, wings have ornaments such as pigmented patches that are sexually selected. Since organisms with pigmented wings need to display the ornament while flying in an optimal way, we might expect a correlative evolution between the wing ornament and wing shape. We examined males from 36 taxa of calopterygid damselflies that differ in wing pigmentation, which is used in sexual displays. We used geometric morphometrics and phylogenetic comparative approaches to analyse whether wing shape and wing pigmentation show correlated evolution. We found that wing pigmentation is associated with certain wing shapes that probably increase the quality of the signal: wings being broader where the pigmentation is located. Our results also showed correlated evolution between wing pigmentation and wing shape in hind wings, but not in front wings, probably because hind wings are more involved in signalling than front wings. The results imply that the evolution of diversity in wing pigmentations and behavioural sexual displays might be an important driver of speciation due to important pre-copulatory selective pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, D. C., & Collyer, M. L. (2007). Analysis of character divergence along environmental gradients and other covariates. Evolution, 61, 510–515.

    Article  PubMed  Google Scholar 

  • Adams, D. C., & Collyer, M. L. (2009). A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution, 63, 1143–1154.

    Article  PubMed  Google Scholar 

  • Adams, D. C., & Nistri, A. (2010). Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae). BMC Evolutionary Biology, 10, 216.

    Article  PubMed  Google Scholar 

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71, 5–16.

    Article  Google Scholar 

  • Anderson, C. N., & Grether, G. F. (2010). Character displacement in the fighting colours of Hetaerina damselflies. Proceedings of the Royal Society Series B, 277, 3669–3675.

    Article  Google Scholar 

  • Andersson, M. (1994). Sexual selection. Princeton: Princeton University Press.

    Google Scholar 

  • Berwaerts, K., Aerts, P., & Van Dyck, H. (2006). On the sex-specific mechanisms of butterfly flight: Flight performance relative to flight morphology, wing kinematics, and sex in Pararge aegeria. Biological Journal of the Linnean Society, 89, 675–687.

    Article  Google Scholar 

  • Betts, C. R., & Wootton, R. J. (1988). Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): A preliminary analysis. Journal of Experimental Biology, 138, 271–288.

    Google Scholar 

  • Blankers, T., Adams, D. C., & Wiens, J. J. (2012). Ecological radiation with limited morphological diversification in salamanders. Journal of Evolutionary Biology, 25, 634–646.

    Article  PubMed  Google Scholar 

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745.

    PubMed  Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data geometry and biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Breuker, C. J., Brakefield, P. M., & Gibbs, M. (2007). The association between wing morphology and dispersal is sex-specific in the glanville fritillary butterfly Melitaea cinxia (Lepidoptera: Nymphalidae). European Journal of Entomology, 104, 445–452.

    Google Scholar 

  • Collyer, M. L., & Adams, D. C. (2007). Analysis of two-state multivariate phenotypic change in ecological studies. Ecology, 88, 683–692.

    Article  PubMed  Google Scholar 

  • Contreras-Garduño, J., Buzatto, B. A., Serrano-Meneses, M. A., Nájera-Cordero, K., & Córdoba-Aguilar, A. (2008). The size of the red wing spot of the American rubyspot as a heightened condition-dependent ornament. Behavioral Ecology, 19, 724–732.

    Article  Google Scholar 

  • Contreras-Garduño, J., Canales-Lazcano, J., & Córdoba-Aguilar, A. (2006). Wing pigmentation, immune ability, fat reserves and territorial status in males of the rubyspot damselfly, Hetaerina americana. Journal of Ethology, 24, 165–173.

    Article  Google Scholar 

  • Cordero Rivera, A., Andrés, J. A., Córdoba-Aguilar, A., & Utzeri, C. (2004). Postmating sexual selection: allopatric evolution of sperm competition mechanisms and genital morphology in calopterygid damselflies (Insecta: Odonata). Evolution, 58, 349–359.

    PubMed  CAS  Google Scholar 

  • Córdoba-Aguilar, A. (2002). Wing pigmentation in territorial male damselflies, Calopteryx haemorrhoidalis: A possible relation to sexual selection. Animal Behaviour, 63, 759–766.

    Article  Google Scholar 

  • Córdoba-Aguilar, A., & Cordero-Rivera, A. (2005). Evolution and ecology of Calopterygidae (Zygoptera: Odonata): Status of knowledge and research perspectives. Neotropical Entomology, 34, 861–879.

    Article  Google Scholar 

  • Debat, V., Bégin, M., Legout, H., & David, J. R. (2003). Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature. Evolution, 57, 2773–2784.

    PubMed  Google Scholar 

  • Derryberry, E. P., Seddon, N., Claramunt, S., Tobias, J. A., Baker, A., Aleixo, A., et al. (2012). Correlated evolution of beak morphology and song in the neotropical woodcreeper radiation. Evolution, 66, 2784–2797.

    Article  PubMed  Google Scholar 

  • DeVries, P. J., Penz, C. M., & Hill, R. I. (2010). Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies. Journal of Animal Ecology, 79, 1077–1085.

    Article  PubMed  CAS  Google Scholar 

  • Dockx, C. (2007). Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.), in Cuba. Biological Journal of the Linnean Society, 92, 605–616.

    Article  Google Scholar 

  • Drake, A. G., & Klingenberg, C. P. (2008). The pace of morphological change: Historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society Series B, 275, 71–76.

    Article  Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.

    Article  PubMed  CAS  Google Scholar 

  • Dumont, H. J., Vanfleteren, J. R., De Jonckheere, J. F., & Weekers, P. H. H. (2005). Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of Calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences. Systematic Biology, 54, 347–362.

    Article  PubMed  Google Scholar 

  • Dumont, H. J., Vierstraete, A., & Vanfleteren, J. R. (2010). A molecular phylogeny of the Odonata (Insecta). Systematic Entomology, 35, 6–18.

    Article  Google Scholar 

  • Ellington, C. P. (1984). The aerodynamics of hovering insect flight. II. Morphological parameters. Philosophical Transactions of the Royal Society Series B, 305, 17–40.

    Article  Google Scholar 

  • Förschler, M. I., & Bairlein, F. (2011). Morphological shifts of the external flight apparatus across the range of a passerine (northern wheatear) with diverging migratory behaviour. PLoS ONE, 6, e18732.

    Article  PubMed  Google Scholar 

  • Garland, T., Jr, Dickerman, A. W., Janis, C. M., & Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Systematic Biology, 42, 265–292.

    Google Scholar 

  • Grether, G. F. (1996a). Intrasexual competition alone favors a sexually dimorphic ornament in the rubyspot damselfly Hetaerina americana. Evolution, 50, 1949–1957.

    Article  Google Scholar 

  • Grether, G. F. (1996b). Sexual selection and survival selection on wing coloration and body size in the rubyspot damselfly Hetaerina americana. Evolution, 50, 1939–1948.

    Article  Google Scholar 

  • Guan, Z., Han, B. P., Vierstraete, A., & Dumont, H. J. (2012). Additions and refinements to the molecular phylogeny of the Calopteryginae Sl (Zygoptera: Calopterygidae). Odonatologica, 41, 17–24.

    Google Scholar 

  • Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 73–98). New York: Springer.

    Chapter  Google Scholar 

  • Hayashi, F., Dobata, S., & Futahashi, R. (2004). Macro- and micro-scale distribution patterns of two closely related Japanese Mnais species inferred from nuclear ribosomal DNA, ITS sequences and morphology (Zygoptera: Calopterygidae). Odonatologica, 33, 399–412.

    Google Scholar 

  • Hedenström, A., & Møller, A. P. (1992). Morphological adaptations to song flight in passerine birds: A comparative study. Proceedings of the Royal Society Series B, 247, 183–187.

    Article  Google Scholar 

  • Hooper, R. E., Tsubaki, Y., & Siva-Jothy, M. T. (1999). Expression of a costly, plastic secondary sexual trait is correlated with age and condition in a damselfly with two male morphs. Physiological Entomology, 24, 364–369.

    Article  Google Scholar 

  • Johansson, F., Söderquist, M., & Bokma, F. (2009). Insect wing shape evolution: Independent effects of migratory and mate guarding flight on dragonfly wings. Biological Journal of the Linnean Society, 97, 362–372.

    Article  Google Scholar 

  • Klingenberg, C. P., & Gidaszewski, N. A. (2010). Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology, 59, 245–261.

    Article  PubMed  CAS  Google Scholar 

  • Legagneux, P., Thery, M., Guillemain, M., Gomez, D., & Bretagnolle, V. (2010). Condition dependence of iridescent wing flash-marks in two species of dabbling ducks. Behavioural Processes, 83, 324–330.

    Article  PubMed  Google Scholar 

  • Marchetti, K., Price, T., & Richman, A. (1995). Correlates of wing morphology with foraging behaviour and migration distance in the genus Phylloscopus. Journal of Avian Biology, 26, 177–181.

    Article  Google Scholar 

  • Monteiro, A., Brakefield, P. M., & French, V. (1997). The relationship between eyespot shape and wing shape in the butterfly Bicyclus anynana: A genetic and morphometrical approach. Journal of Evolutionary Biology, 10, 787–802.

    Article  Google Scholar 

  • Oliver, J. C., Robertson, K. A., & Monteiro, A. (2009). Accommodating natural and sexual selection in butterfly wing pattern evolution. Proceedings of the Royal Society Series B, 276, 2369–2375.

    Article  Google Scholar 

  • Outomuro, D., Bokma, F., & Johansson, F. (2012). Hind wing shape evolves faster than front wing shape in Calopteryx damselflies. Evolutionary Biology, 39, 116–125.

    Article  Google Scholar 

  • Outomuro, D., & Johansson, F. (2011). The effects of latitude, body size, and sexual selection on wing shape in a damselfly. Biological Journal of the Linnean Society, 102, 263–274.

    Article  Google Scholar 

  • Pajunen, V. I. (1966). Aggressive behaviour and territoriality in a population of Calopteryx virgo L. (Odon., Calopterygidae). Annales Zoologici Fennici, 3, 201–214.

    Google Scholar 

  • R Development Core Team. (2011). R: A language and environment for statistical computing. Version 2.15.0. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Rantala, M. J., Honkavaara, J., Dunn, D. W., & Suhonen, J. (2011). Predation selects for increased immune function in male damselflies, Calopteryx splendens. Proceedings of the Royal Society Series B, 278, 1231–1238.

    Article  Google Scholar 

  • Rantala, M. J., Koskimäki, J., Taskinen, J., Tynkkynen, K., & Suhonen, J. (2000). Immunocompetence, developmental stability and wingspot size in the damselfly Calopteryx splendens L. Proceedings of the Royal Society Series B, 267, 2453–2457.

    Article  CAS  Google Scholar 

  • Rohlf, F. J. (2001). Comparative methods for the analysis of continuous variables: Geometric interpretations. Evolution, 55, 2143–2160.

    PubMed  CAS  Google Scholar 

  • Rohlf, F. J. (2004). tpsSplin. Thin-plate spline version 1.20. Available at: http://life.bio.sunysb.edu/morph/.

  • Rohlf, F. J. (2010a). tpsDig version 2.16. Available at: http://life.bio.sunysb.edu/morph/.

  • Rohlf, F. J. (2010b). tpsRelw. Relative warps version 1.49. Available at: http://life.bio.sunysb.edu/morph/.

  • Rohlf, F. J., & Marcus, L. F. (1993). A revolution in morphometrics. Trends in Ecology & Evolution, 8, 129–132.

    Article  Google Scholar 

  • Rohlf, F. J., & Slice, D. (1990). Extension of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.

    Article  Google Scholar 

  • Rutowski, R. L., Nahm, A. C., & Macedonia, J. M. (2010). Iridescent hindwing patches in the pipevine swallowtail: Differences in dorsal and ventral surfaces relate to signal function and context. Functional Ecology, 24, 767–775.

    Article  Google Scholar 

  • Sadeghi, S., Adriaens, D., & Dumont, H. J. (2009). Geometric morphometric analysis of wing shape variation in ten European populations of Calopteryx splendens (Harris, 1782) (Zygoptera: Calopterygidae). Odonatologica, 38, 341–357.

    Google Scholar 

  • Serrano-Meneses, M. A., Córdoba-Aguilar, A., Azpilicueta-Amorín, M., González-Soriano, E., & Székely, T. (2008). Sexual selection, sexual size dimorphism and Rensch’s rule in Odonata. Journal of Evolutionary Biology, 21, 1259–1273.

    Article  PubMed  CAS  Google Scholar 

  • Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F., & Emlen, D. J. (2007). Size and shape: The developmental regulation of static allometry in insects. BioEssays, 29, 536–548.

    Article  PubMed  Google Scholar 

  • Siva-Jothy, M. T. (1999). Male wing pigmentation may affect reproductive success via female choice in a calopterygid damselfly (Zygoptera). Behaviour, 136, 1365–1377.

    Article  Google Scholar 

  • Siva-Jothy, M. T. (2000). A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proceedings of the Royal Society Series B, 267, 2523–2527.

    Article  CAS  Google Scholar 

  • Srygley, R. B. (1999). Locomotor mimicry in Heliconius butterflies: Contrast analyses of flight morphology and kinematics. Philosophical Transactions of the Royal Society Series B, 354, 203–214.

    Article  Google Scholar 

  • Svensson, E. I., & Friberg, M. (2007). Selective predation on wing morphology in sympatric damselflies. American Naturalist, 170, 101–112.

    Article  PubMed  Google Scholar 

  • Svensson, E. I., & Gosden, T. P. (2007). Contemporary evolution of secondary sexual traits in the wild. Functional Ecology, 21, 422–433.

    Article  Google Scholar 

  • Svensson, E. I., Karlsson, K., Friberg, M., & Eroukhmanoff, F. (2007). Gender differences in species recognition and the evolution of asymmetric sexual isolation. Current Biology, 17, 1943–1947.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal-W—Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Tsubaki, Y. (2003). The genetic polymorphism linked to mate-securing strategies in the male damselfly Mnais costalis Selys (Odonata: Calopterygidae). Population Ecology, 45, 263–266.

    Article  Google Scholar 

  • Tynkkynen, K., Rantala, M. J., & Suhonen, J. (2004). Interspecific aggression and character displacement in the damselfly Calopteryx splendens. Journal of Evolutionary Biology, 17, 759–767.

    Article  PubMed  CAS  Google Scholar 

  • Waage, J. K. (1973). Reproductive behavior and its relation to territoriality in Calopteryx maculata (Beauvois) (Odonata: Calopterygidae). Behaviour, 47, 240–256.

    Article  Google Scholar 

  • Wakeling, J. M., & Ellington, C. P. (1997). Dragonfly flight. III. Lift and power requirements. Journal of Experimental Biology, 200, 583–600.

    PubMed  Google Scholar 

  • Weekers, P. H. H., De Jonckheere, J. F., & Dumont, H. J. (2001). Phylogenetic relationships inferred from ribosomal ITS sequences and biogeographic patterns in representatives of the genus Calopteryx (Insecta: Odonata) of the West Mediterranean and adjacent West European zone. Molecular Phylogenetics and Evolution, 20, 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Wickman, P.-O. (1992). Sexual selection and butterfly design—A comparative study. Evolution, 46, 1525–1536.

    Article  Google Scholar 

  • Worthington, A. M., Berns, C. M., & Swallow, J. G. (2012). Size matters, but so does shape: Quantifying complex shape changes in a sexually selected trait in stalk-eyed flies (Diptera: Diopsidae). Biological Journal of the Linnean Society, 106, 104–113.

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to G. Arnqvist who contributed with useful comments to this work. We thank K. D. B. Dijkstra for his support at the NCB Naturalis of Leiden and Gunvi Lindberg for her help at The Swedish Museum of Natural History in Stockholm. We also want to thank P. Brunelle, A. Córdoba-Aguilar, R. Futahashi, D. Halstead, I. Santoyo, G. Sims, Y. Tsubaki, H. Ubukata and X. Yu for their help in providing us with some of the taxa. We are also grateful to M. Hämäläinen who helped us with the determination of some of the taxa for this study. This study has been supported by a postdoc position to D. Outomuro from the Spanish Ministry of Education. D. C. Adams was supported in part by NSF grant DEB-1118884 and F. Johansson was supported by The Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Outomuro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Outomuro, D., Adams, D.C. & Johansson, F. The Evolution of Wing Shape in Ornamented-Winged Damselflies (Calopterygidae, Odonata). Evol Biol 40, 300–309 (2013). https://doi.org/10.1007/s11692-012-9214-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9214-3

Keywords

Navigation