Skip to main content
Log in

Evolvability of the Primate Pelvic Girdle

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The ilium and ischiopubic bones of the pelvis arise from different regulatory pathways, and as a result, they may be modular in their organization such that features on one bone may be morphologically integrated with each other, but not with features on the other pelvic bone. Modularity at this gross level of organization can act to increase the ability of these structures to respond to selection pressures (i.e., their evolvability). Furthermore, recent work has suggested that the evolution of the human pelvis was facilitated by low levels of integration and high levels of evolvability relative to other African apes. However, the extent of morphological integration and modularity of the bones of the pelvic girdle is not well understood, especially across the entire order of primates. Therefore, the hypothesis that the ilium and ischiopubis constitute separate modules was tested using three-dimensional landmark data that were collected from 752 pelves from 35 primate species. In addition, the hypothesis that the human pelvis demonstrates greatest evolvability was tested by comparing it to all other primates. The results demonstrate that regardless of phylogeny and locomotor function, the primate pelvis as a whole is characterized by low levels of overall integration and high levels of evolvability. In addition, the results support the developmental hypothesis of separate ilium and ischiopubis modular units. Finally, all primates, including humans, apparently share a common pattern of integration, modularity, and evolvability in the pelvis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackermann, R. R., & Cheverud, J. M. (2000). Phenotypic covariance structure in tamarins (genus Saguinus): A comparison of variation patterns using matrix correlation and common principal component analysis. American Journal of Physical Anthropology, 111, 489–501.

    PubMed  CAS  Google Scholar 

  • Adair, F. (1918). The ossification centers of the fetal pelvis. The American Journal of Obstetrics and Diseases of Women and Children, 78, 175–199.

    Google Scholar 

  • Anemone, R. (1993). The functional anatomy of the hip and thigh in primates. In D. L. Gebo (Ed.), Postcranial adaptation in nonhuman primates (pp. 150–174). DeKalb, IL: Northern Illinois University Press.

    Google Scholar 

  • Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10kTrees website: A new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114–118.

    Google Scholar 

  • Ashton, E. H., Flinn, R. M., Moore, W. J., Oxnard, C. E., & Spence, T. F. (1981). Further quantitative studies of form and function in the primate pelvis with special reference to Australopithecus. The Transactions of the Zoological Society of London, 36, 1–98.

    Google Scholar 

  • Atchley, W. R., & Hall, B. K. (1991). A model for development and evolution of complex morphological structures. Biological Review, 66, 101–157.

    CAS  Google Scholar 

  • Bastir, M., & Rosas, A. (2009). Mosaic evolution of the basicranium in Homo and its relation to modular development. Evolutionary Biology, 36, 57–70.

    Google Scholar 

  • Berger, L. R., de Ruiter, D. J., Churchill, S. E., Schmid, P., Carlson, K. J., Dirks, P. H. G. M., et al. (2010). Australopithecus sediba: A new species of Homo-like australopith from South Africa. Science, 328, 195–204.

    PubMed  CAS  Google Scholar 

  • Blomberg, S. P., Garland, T., Jr., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57(4), 717–745.

    PubMed  Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. New York: Cambridge University press.

    Google Scholar 

  • Bramble, D. M., & Lieberman, D. E. (2004). Endurance running and the evolution of Homo. Nature, 432, 345–352.

    PubMed  CAS  Google Scholar 

  • Carrier, D. R., Chase, K., & Lark, K. G. (2005). Genetics of canid skeletal variation: Size and shape of the pelvis. Genome Research, 15(12), 1825–1830.

    PubMed  CAS  Google Scholar 

  • Chevallier, A. (1977). Origine des ceintures scapulaires et pelviennes chez l’embryon d’oiseau. Journal of Embryology and Experimental Morphology, 42, 275–292.

    Google Scholar 

  • Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36(3), 499–516.

    Google Scholar 

  • Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution, 42(5), 958–968.

    Google Scholar 

  • Cheverud, J. M. (1995). Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145(1), 63–89.

    Google Scholar 

  • Cheverud, J. M. (1996a). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50.

    Google Scholar 

  • Cheverud, J. M. (1996b). Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology, 9, 5–42.

    Google Scholar 

  • Cheverud, J. M., & Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30(2), 461–469.

    Google Scholar 

  • Cheverud, J. M., Wagner, G. P., & Dow, M. M. (1989). Methods for the comparative analysis of variation patterns. Systematic Zoology, 38(3), 201–213.

    Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. New York: Wiley.

    Google Scholar 

  • Escoufier, Y. (1973). Le traitement des variables vectorielles. Biometrics, 29, 751–760.

    Google Scholar 

  • Fleagle, J. G., & Anapol, F. C. (1992). The indriid ischium and the hominid hip. Journal of Human Evolution, 22, 285–305.

    Google Scholar 

  • Goswami, A. (2006a). Cranial modularity shifts during mammalian evolution. American Naturalist, 168(2), 270–280.

    PubMed  Google Scholar 

  • Goswami, A. (2006b). Morphological integration in the carnivoran skull. Evolution, 60(1), 169–183.

    PubMed  Google Scholar 

  • Goswami, A., & Polly, P. D. (2010). The influence of modularity on cranial morphological disparity in carnivora and primates (Mammalia). PLoS ONE, 5(3), e9517. doi:10.1371/journal.pone.0009517.

    PubMed  Google Scholar 

  • Grabowski, M. W., Polk, J. D., & Roseman, C. C. (2011). Divergent patterns of integration and reduced constraint in the human hip and the origins of bipedalism. Evolution, 65(5), 1336–1356.

    PubMed  Google Scholar 

  • Hallgrímsson, B., Jamniczky, H., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36, 355–376.

    Google Scholar 

  • Hallgrímsson, B., & Lieberman, D. E. (2008). Mouse models and the evolutionary developmental biology of the skull. Integrative and Comparative Biology, 48(3), 373–384.

    PubMed  Google Scholar 

  • Hallgrímsson, B., Willmore, K., & Hall, B. K. (2002). Canalization, developmental stability, and morphological integration in primate limbs. Yearbook of Physical Anthropology, 45, 131–158.

    Google Scholar 

  • Hansen, T. F., & Houle, D. (2004). Evolvability, stabilizing selection, and the problem of stasis. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 130–153). Cary, NC: Oxford University Press.

    Google Scholar 

  • Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21, 1201–1219.

    PubMed  CAS  Google Scholar 

  • Harmon, L. J., & Glor, R. E. (2010). Poor statistical performance of the mantel test in phylogenetic comparative analyses. Evolution, 64(7), 2173–2178.

    PubMed  Google Scholar 

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. Bioinformatics, 24, 129–131.

    PubMed  CAS  Google Scholar 

  • Jouffroy, F. K. (1975). Osteology and myology of the lemuriform postcranial skeleton. In I. Tattersall & R. W. Sussman (Eds.), Lemur biology (pp. 149–192). New York: Plenum Press.

    Google Scholar 

  • Jungers, W. L. (1976). Hindlimb and pelvic adaptations to vertical climbing and clinging in Megaladapis, a giant subfossil prosimian from Madagascar. Yearbook of Physical Anthropology, 20, 508–524.

    Google Scholar 

  • Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463–1464.

    PubMed  CAS  Google Scholar 

  • Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics, 39, 115–132.

    Google Scholar 

  • Klingenberg, C. P. (2009). Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a priori hypotheses. Evolution & Development, 11(4), 405–421.

    Google Scholar 

  • Klingenberg, C. P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.

    PubMed  Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allometry. Evolution, 33, 402–416.

    Google Scholar 

  • Laurenson, R. D. (1964). The chondrification of the human ilium. The Anatomical Record, 148, 197–202.

    PubMed  CAS  Google Scholar 

  • Lewton, K. L. (2010). Locomotor function and the evolution of the primate pelvis [Ph.D.]. Tempe: Arizona State University.

    Google Scholar 

  • Lleonart, J., Salat, J., & Torres, G. J. (2000). Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205, 85–93.

    PubMed  CAS  Google Scholar 

  • Lovejoy, C. O. (1975). Biomechanical perspectives on the lower limb of early hominids. In R. H. Tuttle (Ed.), Primate functional morphology and evolution (pp. 291–326). Chicago: Aldine.

    Google Scholar 

  • Lovejoy, C. O., Suwa, G., Spurlock, L., Asfaw, B., & White, T. D. (2009). The pelvis and femur of Ardipithecus ramidus: The emergence of upright walking. Science, 326(5949), 71–77.

    Google Scholar 

  • MacLatchy, L. (1998). Reconstruction of hip joint function in extant and extinct fossil primates. In E. Strasser, J. G. Fleagle, A. Rosenberger, & H. M. McHenry (Eds.), Primate locomotion: Recent advances (pp. 111–130). New York: Plenum Press.

    Google Scholar 

  • Malashichev, Y., Borkhvardt, V., Christ, B., & Scaal, M. (2005). Differential regulation of avian pelvic girdle development by the limb field ectoderm. Anatomy and Embryology, 210, 187–197.

    PubMed  Google Scholar 

  • Malashichev, Y., Christ, B., & Prols, F. (2008). Avian pelvis originates from lateral plate mesoderm and its development requires signals from both ectoderm and paraxial mesoderm. Cell and Tissue Research, 331, 595–604.

    PubMed  Google Scholar 

  • Manly, B. F. J. (1997). Randomization, bootstrap and Monte Carlo methods in biology. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypuc variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of new world monkeys. Evolution, 55, 2576–2600.

    PubMed  CAS  Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2004a). Cranial evolution in sakis (Pithecia, Platyrrhini) I: Interspecific differentiation and allometric patterns. American Journal of Physical Anthropology, 125, 266–278.

    PubMed  Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2004b). Did natural selection or genetic drift produce the cranial diversification of neotropical monkeys? American Naturalist, 163(3), 417–428.

    PubMed  Google Scholar 

  • Marroig, G., Shirai, L. T., Porto, A., de Oliveira, F. B., & De Conto, V. (2009). The evolution of modularity in the mammalian skull II: Evolutionary consequences. Evolutionary Biology, 36, 136–148.

    Google Scholar 

  • McNulty, K. P. (2005). A geometric morphometric assessment of the hominoid supraorbital region: Affinities of the Eurasian Miocene hominoids Dryopithecus, Graecopithecus, and Sivapithecus. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 349–373). New York: Kluwer.

    Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2008). The evolutionary role of modularity and integration in the hominoid cranium. Evolution, 62(4), 943–958.

    PubMed  Google Scholar 

  • Olson, E. C., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.

    Google Scholar 

  • O’Rahilly, R., & Gardner, E. (1975). The timing and sequence of events in the development of the limbs in the human embryo. Anatomy and Embryology, 148, 1–23.

    PubMed  Google Scholar 

  • Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2009). Measuring morphological integration using eigenvalue variance. Evolutionary Biology, 36, 157–170.

    Google Scholar 

  • Pellegrini, M., Pantano, S., Fumi, M. P., Lucchini, F., & Forabosco, A. (2001). Agenesis of the scapula in Emx2 homozygous mutants. Developmental Biology, 232, 149–156.

    PubMed  CAS  Google Scholar 

  • Pomikal, C., Blumer, R., & Streicher, J. (2011). Four-dimensional analysis of early pelvic girdle development in Rana temporaria. Journal of Morphology, 272, 287–301.

    PubMed  Google Scholar 

  • Pomikal, C., & Streicher, J. (2010). 4D-analysis of early pelvic girdle development in the mouse (Mus musculus). Journal of Morphology, 271(1), 116–126.

    PubMed  Google Scholar 

  • Porto, A., de Oliveira, F. B., Shirai, L. T., de Conto, V., & Marroig, G. (2009). The evolution of modularity in the mammalian skull I: Morphological integration patterns and magnitudes. Evolutionary Biology, 36, 118–135.

    Google Scholar 

  • R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Revell, L. (2007). Skewers: A program for Cheverud’s random skewers method of matrix comparison. http://anolis.oeb.harvard.edu/~liam/programs/.

  • Riedl, R. (1977). A systems-analytical approach to macro-evolutionary phenomena. The Quarterly Review of Biology, 52, 351–370.

    PubMed  CAS  Google Scholar 

  • Robinson, J. T. (1972). Early hominid posture and locomotion. Chicago: The University of Chicago Press.

    Google Scholar 

  • Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40–59.

    Google Scholar 

  • Rolian, C. (2009). Integration and evolvability in primate hands and feet. Evolutionary Biology, 36(1), 100–117.

    Google Scholar 

  • Scott, J. E. (2010). Nonsocial influences on canine size in anthropoid primates [Ph.D.]. Tempe: Arizona State University.

    Google Scholar 

  • Sigmon, B. A., & Farslow, D. L. (1986). The primate hindlimb. In D. R. Swindler & J. Erwin (Eds.), Comparative primate biology, volume 1: Systematics, evolution, and anatomy (pp. 671–718). New York: Alan R. Liss, Inc.

    Google Scholar 

  • Steppan, S. J. (2004). Phylogenetic comparisons of multivariate data. In M. Piglicucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 325–344). New York: Oxford University Press.

    Google Scholar 

  • Stern, J. T., & Susman, R. L. (1983). The locomotor anatomy of Australopithecus afarensis. American Journal of Physical Anthropology, 60, 279–312.

    PubMed  Google Scholar 

  • Strait, D. S. (2001). Integration, phylogeny, and the hominid cranial base. American Journal of Physical Anthropology, 114, 273–297.

    PubMed  CAS  Google Scholar 

  • Tague, R. G. (2005). Big-bodied males help us recognize that females have big pelves. American Journal of Physical Anthropology, 127, 392–405.

    PubMed  Google Scholar 

  • Villmoare, B., Fish, J., & Jungers, W. (2011). Selection, morphological integration, and strepsirrhine locomotor adaptations. Evolutionary Biology, 38(1), 88–99.

    Google Scholar 

  • Wagner, G. P. (1984). On the eigenvalue distribution of genetic and phenotypic dispersion matrices: Evidence for a nonrandom organization of quantitative character variation. Journal of Mathematical Biology, 21, 77–95.

    Google Scholar 

  • Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36(1), 36–43.

    Google Scholar 

  • Williams, S. A. (2010). Morphological integration and the evolution of knuckle-walking. Journal of Human Evolution, 58, 432–440.

    PubMed  Google Scholar 

  • Willis, J. H., Coyne, J. A., & Kirkpatrick, M. (1991). Can one predict the evolution of quantitative characters without genetics? Evolution, 45, 441–444.

    Google Scholar 

  • Young, N. M. (2006). Function, ontogeny and canalization of shape variance in the primate scapula. Journal of Anatomy, 209, 623–636.

    PubMed  Google Scholar 

  • Young, N. M., & Hallgrímsson, B. (2005). Serial homology and the evolution of mammalian limb covariation structure. Evolution, 59, 2691–2704.

    PubMed  Google Scholar 

  • Young, N. M., Wagner, G. P., & Hallgrímsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Science, 107, 3400–3405.

    CAS  Google Scholar 

  • Zelditch, M. L., Wood, A. R., & Swiderski, D. L. (2009). Building developmental integration into functional systems: Function-induced integration of mandibular shape. Evolutionary Biology, 36, 71–87.

    Google Scholar 

Download references

Acknowledgments

Thank you to the following osteological collections managers and staff for access to specimens in their care: D. Lunde and E. Westwig (American Museum of Natural History, NY), L. Gordon (National Museum of Natural History, Washington, D.C.), Y. Haile-Selassie and L. Jellema (Cleveland Museum of Natural History), J. Chupasko (Museum of Comparative Zoology, Harvard), W. Stanley (Field Museum of Natural History, Chicago), P. Jenkins and L. Tomsett (Natural History Museum, London), C. Lefèvre, J. Lesur-Gebremariam, J. Cuisin, and J. Villemain (Muséum national d’Histoire naturelle, Paris), and J. Youssouf and A. Randrianandrasana (Beza Mahafaly Osteological Collection, Madagascar). I thank Jeremiah Scott and Brian Villmoare for methodological discussions, Stephanie Meredith for providing the photographs in Fig. 1, and Natalie Cooper for assistance with R. Guilherme Garcia, Campbell Rolian, and Brian Villmoare kindly provided programs for tests on covariance matrices. Comments by Dan Lieberman, Brian Villmoare, and two anonymous reviewers significantly improved this manuscript. This study was supported by grants from NSF (DDIG, BCS-0752575), The Leakey Foundation, Sigma Xi, and Graduate and Professional Students Association and the School of Human Evolution and Social Change at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristi L. Lewton.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewton, K.L. Evolvability of the Primate Pelvic Girdle. Evol Biol 39, 126–139 (2012). https://doi.org/10.1007/s11692-011-9143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9143-6

Keywords

Navigation