Skip to main content
Log in

Evolution of Adaptation and Mate Choice: Parental Relatedness Affects Expression of Phenotypic Variance in a Natural Population

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Mating between relatives generally results in reduced offspring viability or quality, suggesting that selection should favor behaviors that minimize inbreeding. However, in natural populations where searching is costly or variation among potential mates is limited, inbreeding is often common and may have important consequences for both offspring fitness and phenotypic variation. In particular, offspring morphological variation often increases with greater parental relatedness, yet the source of this variation, and thus its evolutionary significance, are poorly understood. One proposed explanation is that inbreeding influences a developing organism’s sensitivity to its environment and therefore the increased phenotypic variation observed in inbred progeny is due to greater inputs from environmental and maternal sources. Alternatively, changes in phenotypic variation with inbreeding may be due to additive genetic effects alone when heterozygotes are phenotypically intermediate to homozygotes, or effects of inbreeding depression on condition, which can itself affect sensitivity to environmental variation. Here we examine the effect of parental relatedness (as inferred from neutral genetic markers) on heritable and nonheritable components of developmental variation in a wild bird population in which mate choice is often constrained, thereby leading to inbreeding. We found greater morphological variation and distinct contributions of variance components in offspring from highly related parents: inbred offspring tended to have greater environmental and lesser additive genetic variance compared to outbred progeny. The magnitude of this difference was greatest in late-maturing traits, implicating the accumulation of environmental variation as the underlying mechanism. Further, parental relatedness influenced the effect of an important maternal trait (egg size) on offspring development. These results support the hypothesis that inbreeding leads to greater sensitivity of development to environmental variation and maternal effects, suggesting that the evolutionary response to selection will depend strongly on mate choice patterns and population structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alatalo, R. V., Gustaffson, L., & Lundberg, A. (1990). Phenotypic selection on heritable size traits: Environmental variance and genetic response. American Naturalist, 135, 464–471.

    Article  Google Scholar 

  • Altwegg, R., Ringsby, T., & Saether, B. (2000). Phenotypic correlates and consequences of dispersal in a metapopulation of house sparrows Passer domesticus. Journal of Animal Ecology, 69, 762–770.

    Article  Google Scholar 

  • Ardia, D. R. (2005). Super size me: An experimental test of the factors affecting lipid content and the ability of residual body mass to predict lipid stores in nestling European Starlings. Functional Ecology, 19, 414–420.

    Article  Google Scholar 

  • Atchley, W. R. (1984). Ontogeny, timing of development, and genetic variance-covariance structure. American Naturalist, 123, 519–540.

    Article  Google Scholar 

  • Badyaev, A. V. (2005a). Maternal inheritance and rapid evolution of sexual size dimorphism: Passive effects or active strategies? American Naturalist, 166, S17–S30.

    Article  PubMed  Google Scholar 

  • Badyaev, A. V. (2005b). Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proceedings of the Royal Society of London, Series B: Biological Sciences, 272, 877–886.

    Article  Google Scholar 

  • Badyaev, A. V., Hill, G. E., & Whittingham, L. A. (2001a). The evolution of sexual size dimorphism in the house finch. IV. Population divergence in ontogeny. Evolution, 55, 2534–2549.

    PubMed  CAS  Google Scholar 

  • Badyaev, A. V., Whittingham, L. A., & Hill, G. E. (2001b). The evolution of sexual size dimorphism in the house finch. III. Developmental basis. Evolution, 55, 176–189.

    PubMed  CAS  Google Scholar 

  • Badyaev, A. V., Hill, G. E., Beck, M. L., Dervan, A. A., Duckworth, R. A., McGraw, K. J., Nolan, P. M., & Whittingham, L. A. (2002). Sex-biased hatching order and adaptive population divergence in a passerine bird. Science, 295, 316–318.

    Article  PubMed  CAS  Google Scholar 

  • Badyaev, A. V., Oh, K. P., & Mui, R. (2005). Evolution of sex-biased maternal effects in birds: II. Contrasting sex-specific oocyte competition in native and recently established populations. Journal of Evolutionary Biology, 19, 909–921.

    Article  Google Scholar 

  • Badyaev, A. V., Hamstra, T. L., Oh, K. P., & Acevedo Seaman, D. (2006). Sex-biased maternal effects reduce ectoparasite-induced mortality in a passerine bird. Proceedings of the National Academy of Sciences of the United States of America, 103, 14406–14411.

    Article  PubMed  CAS  Google Scholar 

  • Balloux, F., Amos, W., & Coulson, T. (2004). Does heterozygosity estimate inbreeding in real populations? Molecular Ecology, 13, 3021–3031.

    Article  PubMed  CAS  Google Scholar 

  • Blouin, M. S. (2003). DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends in Ecology & Evolution, 18, 503–511.

    Article  Google Scholar 

  • Blouin, S. F., & Blouin, M. S. (1988). Inbreeding avoidance behaviors. Trends in Ecology & Evolution, 3, 230–233.

    Article  Google Scholar 

  • Brown, W., & Roth, R. (2004). Juvenile survival and recruitment of wood thrushes Hylocichla mustelina in a forest fragment. Journal of Avian Biology, 35, 316–326.

    Article  Google Scholar 

  • Chakraborty, R., & Ryman, N. (1983). Relationship of mean and variance of genotypic values with heterozygosity per individual in a natural population. Genetics, 103, 149–152.

    PubMed  CAS  Google Scholar 

  • Charlesworth, D., & Charlesworth, B. (1987). Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics, 18, 237–268.

    Article  Google Scholar 

  • Charmantier, A., Perrins, C., McCleery, R. H., & Sheldon, B. C. (2006). Age-dependent genetic variation in a life-history trait in the mute swan. Proceedings of the Royal Society of London, Series B: Biological Sciences, 273, 225–232.

    Article  Google Scholar 

  • Cheverud, J. M. (1996). Developmental integration and the evolution of pleitropy. American Zoologist, 36, 44–50.

    Google Scholar 

  • Cleveland, W. S., & Devlin, S. J. (1988). Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association, 83, 596–610.

    Article  Google Scholar 

  • Coellho, A. M. (1985). Baboon dimorphism: Growth in weight, length and adiposity from birth to eight years of age. Monographs in Primatology, 6, 125–129.

    Google Scholar 

  • Cooper, W. S., & Kaplan, R. H. (1982). Adaptive “coin-flipping”: A decision-theoretic examination of natural selection for random individual variation. Journal of Theoretical Biology, 94, 135–151.

    Article  PubMed  CAS  Google Scholar 

  • David, P. (1999). A quantitative model of the relationship between phenotypic variance and heterozygosity at marker loci under partial selfing. Genetics, 153, 1463–1474.

    PubMed  CAS  Google Scholar 

  • David, P., Delay, B., & Jarne, P. (1997). Heterozygosity and growth in the marine bivalve Spisula ovalis: Testing alternative hypotheses. Genetical Research, 70, 215–223.

    Article  Google Scholar 

  • Deng, H-W. (1997). Increase in developmental instability upon inbreeding in Daphnia. Heredity, 78, 182–189.

    Article  Google Scholar 

  • Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics. London: Longman.

    Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Oxford, U.K.: Clarendon Press.

    Google Scholar 

  • Fleischer, R. C., Johnson, R. F., & Klitz, W. J. (1983). Allozymic heterozygosity and morphological variation in house sparrows. Nature, 304, 628–630.

    Article  PubMed  CAS  Google Scholar 

  • Foerster, K., Delhey, K., Johnsen, A., Lifjeld, J. T., & Kempenaers, B. (2003). Females increase offspring heterozygosity and fitness through extra-pair matings. Nature, 425, 714–717.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, A. R., Gogel, B. J., Cullis, B. R., & Thompson, R. (2006). ASReml User Guide Release 2.0. Hemel Hempstead, HP1 1ES, UK: VSN International Ltd.

  • Goudet, J. (2001). FSTAT, a program to estimate and test gene diversities and fixation indices. Version 2.9.3.

  • Green, A. J. (2001). Mass/length residuals: Measures of body condition or generators of spurious results? Ecology, 82, 1473–1483.

    Google Scholar 

  • Griffiths, R., Daan, S., & Dijkstra, C. (1996). Sex identification in birds using two CHD genes. Proceedings of the Royal Society of London, Series B: Biological Sciences, 263, 1251–1256.

    Article  CAS  Google Scholar 

  • Hadany, L., & Beker, T. (2003). Fitness-associated recombination on rugged adaptive landscapes. Journal of Evolutionary Biology, 16, 862–870.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B. K. (2005). Fifty years later: I. Michael Lerner’s Genetic Homeostasis (1954)–a valiant attempt to integrate genes, organisms and environment. Journal of Experimental Zoology, 304B, 187–197.

    Article  Google Scholar 

  • Hawley, D. M., Hanley, D., Dhondt, A. A., & Lovette, I. J. (2006). Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic. Molecular Ecology, 15, 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Hipfner, J. M., & Gaston, A. J. (1999). The relationship between egg size and posthatching development in the thick-billed murre. Ecology, 80, 1289–1297.

    Article  Google Scholar 

  • Hoffman, A. A., & Merilä, J. (1999). Heritable variation and evolution under favourable and unfavourable conditions. Trends in Ecology & Evolution, 14, 96–101.

    Article  Google Scholar 

  • Hoffman, A. A., & Parsons, P. A. (1991). Evolutionary genetics and environmental stress. Oxford, U.K.: Oxford University Press.

    Google Scholar 

  • Jamieson, A., & Taylor, S. C. S. (1997). Comparisons of three probability formulae for parentage exclusion. Animal Genetics, 28, 397–400.

    Article  PubMed  CAS  Google Scholar 

  • Johnsen, A., Andersen, V., Sunding, C., & Lifjeld, J. T. (2000). Female bluethroates enhance offspring immunocompetence through extra-pair copulations. Nature, 406, 296–299.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, R. H., & Cooper, W. S. (1984). The evolution of developmental plasticity in reproductive characteristics: An application of the “adaptive coin-flipping” principle. American Naturalist, 123, 393–410.

    Article  Google Scholar 

  • Keller, L. F., & Arcese, P. (1998). No evidence for inbreeding avoidance in a natural population of song sparrows (Melospiza melodia). American Naturalist, 152, 380–392.

    Article  PubMed  CAS  Google Scholar 

  • Keller, L. F., & Waller, D. M. (2002). Inbreeding effects in wild populations. Trends in Ecology & Evolution, 17, 230–241.

    Article  Google Scholar 

  • King, D. P. F. (1985). Enzyme heterozygosity associated with anatomical character variance and growth in the herring (Clupea harengus L.). Heredity, 54, 289–296.

    Article  PubMed  Google Scholar 

  • Kirkpatrick, M., & Lande, R. (1989). The evolution of maternal characters. Evolution, 43, 485–503.

    Article  Google Scholar 

  • Kristensen, T. N., Sørensen, A. C., Sorensen, D., Pedersen, K. S., Sørensen, J. G., & Loeschcke, V. (2005). A test of quantitative genetic theory using Drosophila—effects of inbreeding and rate of inbreeding on heritabilities and variance components. Journal of Evolutionary Biology, 18, 763–770.

    Article  PubMed  CAS  Google Scholar 

  • Kruuk, L. E. B. (2004). Estimating genetic parameters in natural populations using the ‘animal model’. Proceedings of the Royal Society of London Series B-Biological Sciences, 359, 873–890.

    Article  Google Scholar 

  • Kruuk, L. E. B., Sheldon, B. C., & Merilä, J. (2002). Severe inbreeding depression in collared flycatchers (Ficedula albicollis). Proceedings of the Royal Society of London, Series B: Biological Sciences, 269, 1581–1589.

    Article  Google Scholar 

  • Leary, R. J., Allendorf, F. W., & Knudsen, K. L. (1983). Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes. American Naturalist, 124, 540–551.

    Google Scholar 

  • Lerner, I. M. (1954). Genetic homeostasis. London: Oliver and Boyd.

    Google Scholar 

  • Lessells, C. M., & Boag, P. (1987). Unrepeatable repeatabilities: A common mistake. Auk, 104, 116–121.

    Google Scholar 

  • Levene, H. (1960). Robust tests for equality of variances. In I Olkin, SG Ghurye, W Heoffding, WG Madow, & HB Mann (Eds.), Contributions to probability and statistics (pp. 278–292). Stanford, CA USA: Stanford University Press.

    Google Scholar 

  • Lindstedt, E., Oh, K. P., & Badyaev, A. V. (2006). Ecological, social, and genetic contingency of extrapair behavior in a socially monogmous bird. Journal of Avian Biology, 38, 214–238.

    Article  Google Scholar 

  • Maddox, J. D., & Weatherhead, P. J. (2008). Egg size variation in birds with asynchronous hatching: Is bigger really better? American Naturalist, 171, 358–365.

    Article  PubMed  Google Scholar 

  • McCleery, R. H., Pettifor, R. A., Armbruster, P., Meyer, K., Sheldon, B. C., Perrins, & C. M. (2004). Components of variance underlying fitness in a natural population of the great tit Parus major. American Naturalist, 164, E62–E72.

    Article  PubMed  CAS  Google Scholar 

  • McGinley, M. A., Temme, D. H., & Geber, M. A. (1987). Parental investment in offspring in variable environments: Theoretical and empirical considerations. American Naturalist, 130, 370–198.

    Article  Google Scholar 

  • Merilä, J. (1997). Expression of genetic variation in body size of the collared flycatcher under different environmental conditions. Evolution, 51, 526–536.

    Article  Google Scholar 

  • Merilä, J., Kruuk, L. E. B., & Sheldon, B. C. (2001). Natural selection on the genetical component of variance in body condition in a wild bird population. Journal of Evolutionary Biology, 14, 918–929.

    Article  Google Scholar 

  • Merilä, J., & Sheldon, B. C. (1999). Genetic architecture of fitness and nonfitness traits: Empirical patterns and development of ideas. Heredity, 83, 103–109.

    Article  PubMed  Google Scholar 

  • Mitton, J. B. (1978). Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature, 273, 661–662.

    Article  PubMed  CAS  Google Scholar 

  • Mitton, J. B. (1993). Enzyme heterozygosity, metabolism, and developmental stability. Genetica, 89, 47–65.

    Article  CAS  Google Scholar 

  • Mitton, J. B., & Grant, M. C. (1984). Associations among protein heterozygosity, growth rate, and developmental homeostasis. Annual Review of Ecology and Systematics, 15, 479–499.

    Article  Google Scholar 

  • Mitton, J. B., & Pierce, B. A. (1980). The distribution of individual heterozygosity in natural populations. Genetics, 95, 1043–1054.

    PubMed  Google Scholar 

  • Møller, A. P., & Saino, N. (2004). Immune response and survival. Oikos, 104, 299–304.

    Article  Google Scholar 

  • Moses, L. E., Gale, L. C., & Altmann, J. (1992). Methods for analysis of unbalanced, longitudinal, growth data. American Journal of Primatology, 28, 49–59.

    Article  Google Scholar 

  • Mousseau, T. A., & Fox, C. W. (1998). The adaptive significance of maternal effects. Trends in Ecology & Evolution, 13, 403–407.

    Article  Google Scholar 

  • Oh, K. P., & Badyaev, A. V. (2006). Adaptive genetic complementarity in mate choice coexists with preference for elaborate sexual traits. Proceedings of the Royal Society of London, Series B: Biological Sciences, 273, 1913–1919.

    Article  Google Scholar 

  • Pemberton, J. (2004). Measuring inbreeding depression in the wild: The old ways are the best. Trends in Ecology & Evolution, 19, 613–615.

    Article  Google Scholar 

  • Potti, J. (1999). Maternal effects and the pervasive impact of nestling history on egg size in a passerine bird. Evolution, 53, 279–285.

    Article  Google Scholar 

  • Pusey, A., & Wolf, M. (1996). Inbreeding avoidance in animals. Trends in Ecology & Evolution, 11, 201–206.

    Article  Google Scholar 

  • Rasanen, K., & Kruuk, L. E. B. (2007). Maternal effects and evolution at ecological time-scales. Functional Ecology, 21, 408–421.

    Article  Google Scholar 

  • Réale, D., & Roff, D. A. (2003). Inbreeding, developmental stability, and canalization in the sand cricket Gryllus firmus. Evolution, 57, 597–605.

    PubMed  Google Scholar 

  • Reed, D. H., Lowe, E. H., Briscoe, D. A., & Frankham, R. (2003). Fitness and adaptation in a novel environment: Effect of inbreeding, prior environment, and lineage. Evolution, 57, 1822–1828.

    PubMed  Google Scholar 

  • Reed, W. L. (1999). Consequences of egg-size variation in the red-winged blackbird. Auk, 116, 549–552.

    Google Scholar 

  • Ricklefs, R. E. (1973). Patterns of growth in birds. II. Growth rate and mode of development. Ibis, 115, 177–201.

    Article  Google Scholar 

  • Roff, D. A. (1997). Evolutionary quantitative genetics. New York: Chapman and Hall.

    Google Scholar 

  • Roff, D. A. (1998). Effects of inbreeding on morphological and life history traits of the sand cricket, Gryllus firmus. Heredity, 81, 28–37.

    Article  Google Scholar 

  • Rousset, F. (2002). Inbreeding and relatedness coefficients: What do they measure? Heredity, 88, 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Saino, N., Calza, S., & Møller, A. P. (1997). Immunocompetence of nestling barn swallows in relation to brood size and parental effort. Journal of Animal Ecology, 66, 827–836.

    Article  Google Scholar 

  • Schmalhausen, I. I. (1949). Factors of evolution. Philadelphia, Pennsylvania: Blakiston.

    Google Scholar 

  • Schulte-Hostedde, A. I., Zinner, B., Millar, J. S., & Hickling, G. J. (2005). Restitution of mass-size residuals: Validating body condition indices. Ecology, 86, 155–163.

    Article  Google Scholar 

  • Schultz, B. B. (1985). Levene’s test for relative variation. Systematic Zoology, 34, 449–456.

    Article  Google Scholar 

  • Setchell, J. M., Lee, P. C., Wickings, E. J., & Dixson, A. F. (2001). Growth and ontogeny of sexual size dimorphism in the mandrill (Mandrillus sphinx). American Journal of Physical Anthropology, 115, 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, R. G. (1991). The comparison of quantitative genetic parameters between populations. Evolution, 45, 143–151.

    Article  Google Scholar 

  • van de Casteele, T. V., Galbusera, P., & Matthysen, E. (2001). A comparison of microsatellite-based pairwise relatedness estimators. Molecular Ecology, 10, 1539–1549.

    Article  PubMed  Google Scholar 

  • Wang, J. (2002). An estimator for pairwise relatedness using molecular markers. Genetics, 160, 1203–1215.

    PubMed  CAS  Google Scholar 

  • Wang, Z., Baker, A. J., Hill, G. E., & Edwards, S. V. (2003). Reconciling actual and inferred population histories in the house finch (Carpodacus mexicanus) by AFLP analysis. Evolution, 57, 2852–2864.

    PubMed  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.

  • Whitlock, M. C., & Fowler, K. (1996). The distribution among populations in phenotypic variance with inbreeding. Evolution, 50, 1919–1926.

    Article  Google Scholar 

  • Whitlock, M. C., & Fowler, K. (1999). The changes in genetic and environmental variance with inbreeding in Drosophila melanogaster. Genetics, 152, 345–353.

    PubMed  CAS  Google Scholar 

  • Williams, T. D. (1994). Intraspecific variation in egg size and egg composition in birds: Effects on offspring fitness. Biological Reviews, 69, 35–59.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A. J., Kruuk, L. E. B., & Coltman, D. W. (2005). Ontogenetic patterns in heritable variation for body size: Using random regression models in a wild ungulate population. American Naturalist, 166, E177–E192.

    Article  PubMed  Google Scholar 

  • Wilson, A. J., & Réale, D. (2006). Ontogeny of additive and maternal genetic effects: Lessons from domestic mammals. American Naturalist, 167, E23–E38.

    Article  PubMed  Google Scholar 

  • Wright, S. (1921). Systems of mating II. The effects of inbreeding on the genetic composition of a population. Genetics, 6, 124–143.

    PubMed  CAS  Google Scholar 

  • Yezerinac, S. M., Lougheed, S. C., & Handford, P. (1992). Morphological variability and enzyme heterozygosity: Individual and population level correlations. Evolution, 46, 1959–1964.

    Article  Google Scholar 

  • Young, R. L., & Badyaev, A. V. (2007). Evolution of ontogeny: Linking epigenetic remodeling and genetic adaptation in skeletal structures. Integrative and Comparative Biology, 47, 234–244.

    Article  Google Scholar 

Download references

Acknowledgments

We thank R. Young, D. Acevedo Seaman, R. Duckworth, J. Good, L. Reed, E. Landeen, and two anonymous reviewers for helpful suggestions that greatly improved the manuscript. We thank J. Hubbard, T. Hamstra, E. Lindstedt, J. Merkle, L. Mizstal, R. Mui, E. Solares, and C. Secomb for help with the fieldwork and molecular analyses. This study was funded by grants from the NSF (DEB-0075388, DEB-0077804, IOB-0218313), the Packard Foundation, and the James Silliman Memorial Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. Oh.

 

 

Appendix Components of phenotypic variance for offspring of parents with typical (left column) versus relatively high relatedness (right column)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, K.P., Badyaev, A.V. Evolution of Adaptation and Mate Choice: Parental Relatedness Affects Expression of Phenotypic Variance in a Natural Population. Evol Biol 35, 111–124 (2008). https://doi.org/10.1007/s11692-008-9017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9017-8

Keywords

Navigation