Skip to main content
Log in

L’effet du poids du père sur la fertilité et sur la santé des descendants

Impact of father’s obesity on the fertility and the offspring health

  • Dossier Thématique / Thematic File
  • Published:
Obésité

Résumé

De nombreux facteurs concernant le mode de vie et l’environnement sont susceptibles d’agir sur la fertilité masculine en provoquant des altérations spermatiques, aussi bien en termes de quantité que de qualité. Parmi ces facteurs, l’état nutritionnel, le poids et le statut métabolique des partenaires masculins de couples infertiles seraient associés à l’infertilité. Les mécanismes impliqués sont nombreux et complexes. Un dysfonctionnement hormonal, une inflammation chronique et un déséquilibre du stress oxydant sont les mieux évalués. Des modifications épigénétiques pourraient également jouer un rôle, associées à l’environnement; elles sont également impliquées dans la transmission paternelle non génétique, transgénérationnelle, de pathologies à long terme. Cette notion a émergé récemment et suscite un intérêt croissant. Quelques données, chez l’homme, mais surtout chez l’animal, ont révélé la transmission de marques épigénétiques modifiées en cas d’obésité masculine, telles que des modifications des profils de méthylation de l’ADN ou des altérations des profils des microARNs. Ces modifications semblent être à l’origine, entre autres, de pathologies métaboliques chez les descendants.

Abstract

Many lifestyle and environmental factors are likely to affect male fertility through alteration of sperm quantity and quality. Among these factors, male nutritional behaviour, weight and metabolic status could be associated with infertility. The mechanisms involved are numerous and complex. Hormonal dysfunction, chronic inflammation and imbalance of oxidative stress are well evaluated. Epigenetic changes associated with the environment could also play a critical role. Epigenetic changes are also involved in the nongenetic, transgenerational paternal transmission of long-term pathologies. Some data, in humans but especially in animals, have revealed the transmission of modified epigenetic marks in case of male obesity, such as changes in DNA methylation profiles or alterations in microRNA profiles. These changes could lead to metabolic pathologies in the offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Zegers-Hochschild F, Adamson GD, de Mouzon J, et al (2009) International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril 92:1520–4.

    Article  CAS  PubMed  Google Scholar 

  2. Sakkas D Alvarez JG (2010) Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93:1027–36.

    Article  CAS  PubMed  Google Scholar 

  3. Sermondade N, Faure C, Fezeu L, et al (2013) BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis. Hum Reprod Update 19:221–31.

    Article  CAS  PubMed  Google Scholar 

  4. Dupont C, Faure C, Sermondade N, et al (2013) Obesity leads to higher risk of sperm DNA damage in infertile patients. Asian J Androl 15:622–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grandjean V, Fourre S, De Abreu DA, et al (2015) RNAmediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep 5: 18193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lane M, Robker RL Robertson SA (2014) Parenting from before conception. Science 345:756–60.

    Article  CAS  PubMed  Google Scholar 

  7. Ramlau-Hansen CH, Thulstrup AM, Nohr EA, et al (2007) Subfecundity in overweight and obese couples. Hum Reprod 22:1634–7.

    Article  CAS  PubMed  Google Scholar 

  8. Campbell JM, Lane M, Owens JA, et al (2015) Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod Biomed Online 31:593–604.

    Article  PubMed  Google Scholar 

  9. Sermondade N, Faure C, Fezeu L, et al (2012) Obesity and increased risk for oligozoospermia and azoospermia. Arch Intern Med 172:440–2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Belloc S, Cohen-Bacrie M, Amar E, et al (2014) High body mass index has a deleterious effect on semen parameters except morphology: results from a large cohort study. Fertil Steril 102:1268–73.

    Article  PubMed  Google Scholar 

  11. Chavarro JE, Toth TL, Wright DL, et al (2010) Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil Steril 93:2222–31.

    Article  CAS  PubMed  Google Scholar 

  12. Kort HI, Massey JB, Elsner CW, et al (2006) Impact of body mass index values on sperm quantity and quality. J Androl 27:450–2.

    Article  PubMed  Google Scholar 

  13. Sekhavat L Moein MR (2010) The effect of male body mass index on sperm parameters. Aging Male 13: 155-8.14.

  14. Bandel I, Bungum M, Richtoff J, et al (2015) No association between body mass index and sperm DNA integrity. Hum Reprod 30:1704–13.

    Article  CAS  PubMed  Google Scholar 

  15. Eisenberg ML, Kim S, Chen Z, et al (2015) The relationship between male BMI and waist circumference on semen quality: data from the LIFE study. Hum Reprod 30:493–4.

    Article  PubMed  Google Scholar 

  16. Simon L, Zini A, Dyachenko A, et al (2017) A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl 19:80–90.

    PubMed  Google Scholar 

  17. Despres JP Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–7.

    Article  CAS  PubMed  Google Scholar 

  18. Fejes I, Koloszar S, Szollosi J, et al (2005) Is semen quality affected by male body fat distribution? Andrologia 37:155–9.

    Article  CAS  PubMed  Google Scholar 

  19. Hammiche F, Laven JS, Twigt JM, et al (2012) Body mass index and central adiposity are associated with sperm quality in men of subfertile couples. Hum Reprod 27:2365–72.

    Article  PubMed  Google Scholar 

  20. Lu JC, Jing J, Dai JY, et al (2015) Body mass index, waist-to-hip ratio, waist circumference and waist-to-height ratio cannot predict male semen quality: a report of 1231 subfertile Chinese men. Andrologia 47:1047–54.

    Article  CAS  PubMed  Google Scholar 

  21. Grundy SM, Brewer HB, Jr., Cleeman JI, et al (2004) Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109:433–8.

    Article  PubMed  Google Scholar 

  22. Lu JC, Jing J, Yao Q, et al (2016) Relationship between Lipids Levels of Serum and Seminal Plasma and Semen Parameters in 631 Chinese Subfertile Men. PLoS One 11: e0146304.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Leisegang K, Udodong A, Bouic PJ, et al (2014) Effect of the metabolic syndrome on male reproductive function: a casecontrolled pilot study. Andrologia 46:167–76.

    Article  CAS  PubMed  Google Scholar 

  24. Michalakis K, Mintziori G, Kaprara A, et al (2013) The complex interaction between obesity, metabolic syndrome and reproductive axis: A narrative review. Metabolism 62:457–78.

    Article  CAS  PubMed  Google Scholar 

  25. Ventimiglia E, Capogrosso P, Colicchia M, et al (2016) Metabolic syndrome in white European men presenting for primary couple’s infertility: investigation of the clinical and reproductive burden. Andrology 4:944–51.

    Article  CAS  PubMed  Google Scholar 

  26. Pasquali R Gambineri A (2006) Metabolic effects of obesity on reproduction. Reprod Biomed Online 12:542–51.

    Article  CAS  PubMed  Google Scholar 

  27. Monteiro R Azevedo I (2010) Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm.

    Google Scholar 

  28. Furukawa S, Fujita T, Shimabukuro M, et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Landry D, Cloutier F Martin LJ (2013) Implications of leptin in neuroendocrine regulation of male reproduction. Reprod Biol 13:1–14.

    Article  PubMed  Google Scholar 

  30. Hautanen A (2000) Synthesis and regulation of sex hormonebinding globulin in obesity. Int J Obes Relat Metab Disord 24 Suppl 2: S64–70.

    Article  CAS  PubMed  Google Scholar 

  31. Feve B, Bastard JP, Vidal H (2006) [Relationship between obesity, inflammation and insulin resistance: new concepts]. C R Biol 329:587–97; discussion 653-5.

    Article  CAS  PubMed  Google Scholar 

  32. Aitken RJ, Gibb Z, Baker MA, et al (2016) Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 28:1–10.

    Article  CAS  PubMed  Google Scholar 

  33. Tremellen K (2008) Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update 14:243–58.

    Article  CAS  PubMed  Google Scholar 

  34. Vincent HK, Innes KE, Vincent KR (2007) Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes Metab 9:813–39.

    Article  CAS  PubMed  Google Scholar 

  35. Chughtai B, Lee RK, Te AE, et al (2011) Metabolic syndrome and sexual dysfunction. Curr Opin Urol 21:514–8.

    Article  PubMed  Google Scholar 

  36. Mieusset R, Bujan L (1995) Testicular heating and its possible contributions to male infertility: a review. Int J Androl 18:169–84.

    Article  CAS  PubMed  Google Scholar 

  37. Fullston T, Ohlsson Teague EM, Palmer NO, et al (2013) Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 27:4226–43.

    Article  CAS  PubMed  Google Scholar 

  38. Ng SF, Lin RC, Maloney CA, et al (2014) Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J 28:1830–41.

    Article  CAS  PubMed  Google Scholar 

  39. Cropley JE, Eaton SA, Aiken A, et al (2016) Male-lineage transmission of an acquired metabolic phenotype induced by grandpaternal obesity. Mol Metab 5:699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Castro Barbosa T (de), Ingerslev LR, Alm PS, et al (2016) Highfat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab 5:184–97.

    Article  PubMed  Google Scholar 

  41. McPherson NO, Bell VG, Zander-Fox DL, et al (2015) When two obese parents are worse than one! Impacts on embryo and fetal development. Am J Physiol Endocrinol Metab 309: E568–81.

    Article  CAS  PubMed  Google Scholar 

  42. Fullston T, Ohlsson-Teague EM, Print CG, et al (2016) Sperm microRNA Content Is Altered in a Mouse Model of Male Obesity, but the Same Suite of microRNAs Are Not Altered in Offspring’s Sperm. PLoS One 11: e0166076.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gunes S, Arslan MA, Hekim GN, et al (2016) The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet 33:553–69.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hannan JL, Maio MT, Komolova M, et al (2009) Beneficial impact of exercise and obesity interventions on erectile function and its risk factors. J Sex Med 6 Suppl 3:254–61.

    Article  PubMed  Google Scholar 

  45. Hakonsen LB, Thulstrup AM, Aggerholm AS, et al (2011) Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men. Reprod Health 8:24.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rafiee B, Morowvat MH, Rahimi-Ghalati N (2016) Comparing the Effectiveness of Dietary Vitamin C and Exercise Interventions on Fertility Parameters in Normal Obese Men. Urol J 13:2635–9.

    PubMed  Google Scholar 

  47. Faure C, Dupont C, Baraibar MA, et al (2014) In subfertile couple, abdominal fat loss in men is associated with improvement of sperm quality and pregnancy: a case-series. PLoS One 9: e86300.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mitchell M, Bakos HW, Lane M (2011) Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil Steril 95:1349–53.

    Article  PubMed  Google Scholar 

  49. Palmer NO, Bakos HW, Owens JA, et al (2012) Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am J Physiol Endocrinol Metab 302: E768–80.

    Article  CAS  PubMed  Google Scholar 

  50. Reis LO, Favaro WJ, Barreiro GC, et al (2010) Erectile dysfunction and hormonal imbalance in morbidly obese male is reversed after gastric bypass surgery: a prospective randomized controlled trial. Int J Androl 33:736–44.

    Article  CAS  PubMed  Google Scholar 

  51. di Frega AS, Dale B, Di Matteo L, et al (2005) Secondary male factor infertility after Roux-en-Y gastric bypass for morbid obesity: case report. Hum Reprod 20:997–8.

    Article  PubMed  Google Scholar 

  52. Sermondade N, Massin N, Boitrelle F, et al (2012) Sperm parameters and male fertility after bariatric surgery: three case series. Reprod Biomed Online 24:206–10.

    Article  PubMed  Google Scholar 

  53. Lazaros L, Hatzi E, Markoula S, et al (2012) Dramatic reduction in sperm parameters following bariatric surgery: report of two cases. Andrologia 44:428–32.

    Article  CAS  PubMed  Google Scholar 

  54. Hue O, Marcotte J, Berrigan F, et al (2006) Increased plasma levels of toxic pollutants accompanying weight loss induced by hypocaloric diet or by bariatric surgery. Obes Surg 16:1145–54.

    Article  PubMed  Google Scholar 

  55. El Bardisi H, Majzoub A, Arafa M, et al (2016) Effect of bariatric surgery on semen parameters and sex hormone concentrations: a prospective study. Reprod Biomed Online 33:606–611.

    Article  PubMed  Google Scholar 

  56. Gluckman PD, Hanson MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305:1733–6.

    Article  CAS  PubMed  Google Scholar 

  57. Dupont C, Cordier AG, Junien C, et al (2012) Maternal environment and the reproductive function of the offspring. Theriogenology 78:1405–14.

    Article  CAS  PubMed  Google Scholar 

  58. Soubry A, Schildkraut JM, Murtha A, et al (2013) Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Med 11:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Soubry A, Guo L, Huang Z, et al (2016) Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study. Clin Epigenetics 8:51.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zalbahar N, Najman J, McIntrye HD, et al (2016) Parental prepregnancy BMI influences on offspring BMI and waist circumference at 21 years. Aust N Z J Public Health 40:572–8.

    Article  PubMed  Google Scholar 

  61. Carone BR, Fauquier L, Habib N, et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ng SF, Lin RC, Laybutt DR, et al (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467:963–6.

    Article  CAS  PubMed  Google Scholar 

  63. Fullston T, Palmer NO, Owens JA, et al (2012) Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum Reprod 27:1391–400.

    Article  CAS  PubMed  Google Scholar 

  64. Chen Q, Yan M, Cao Z, et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:397–400.

    Article  CAS  PubMed  Google Scholar 

  65. Bakos HW, Henshaw RC, Mitchell M, et al (2011) Paternal body mass index is associated with decreased blastocyst development and reduced live birth rates following assisted reproductive technology. Fertil Steril 95:1700–4.

    Article  PubMed  Google Scholar 

  66. McPherson NO, Lane M, Sandeman L, et al (2017) An Exercise-Only Intervention in Obese Fathers Restores Glucose and Insulin Regulation in Conjunction with the Rescue of Pancreatic Islet Cell Morphology and MicroRNA Expression in Male Offspring. Nutrients 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Dupont or R. Lévy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dupont, C., Sermondade, N., Elfassy-Zarka, Y. et al. L’effet du poids du père sur la fertilité et sur la santé des descendants. Obes 12, 193–199 (2017). https://doi.org/10.1007/s11690-017-0568-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-017-0568-7

Mots clés

Keywords

Navigation