Skip to main content
Log in

Morphological, Molecular Identification and Distribution of Trypanosome-Transmitting Dipterans from Cattle Settlements in Southwest Nigeria

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Introduction

Glossina spp. (Glossinidae), Tabanus spp. (Tabanidae), Ancala spp. (Tabanidae), Atylotus spp. (Tabanidae) and Stomoxys spp. (Muscidae) are important transmitting vectors of African animal trypanosomosis in sub-Saharan Africa. There is paucity of information on the distribution and identification of these flies in cattle settlements in southwest Nigeria.

Methods

The distribution patterns, genetic variations and diversities of dipteran flies in southwest Nigeria were described and identified using morphological and molecular analysis of the 28S rDNA gene.

Results

Of the 13,895 flies examined morphologically between April 2016 and March 2017, tabanids were identified [Tabanus (0.34%), Ancala (0.03%), Atylotus (0.01%), Haematopota (0.014%) and Chrysops (0.11%)]. Two stomoxyine species were identified; Stomoxys niger niger Macquart (45.30%) and Stomoxys calcitrans Linnaeus (17.29%) and two Glossina spp. namely; Glossina p. gambiense Vanderplank, 1911 (0.46%) and Glossina tachinoides Westwood (0.51%) were identified. The identities were further confirmed in a BLAST search using their nucleotide sequences. The median-joining network of the 28S rDNA gene sequences indicated that fly species examined were genetically distinct. The apparent density of all the trapped flies was highest at a mean temperature of 26–28 ℃, humidity > 80% and rainfall of 150–220 mm/month. The distribution of flies was observed to increase as vegetation increased in density and decreased in areas with relatively high human population density (> 100/km2).

Conclusions

The population indices of the 28S rDNA gene of the flies suggest that analysis of nuclear DNA fragments may provide more information on the molecular ecology of these flies. Characterising fly species and assessing their impact are essential in distribution and monitoring AAT spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO (2016) World Health Organization. Number of new reported cases (T. b. gambiense). Data by country. https://apps.who.int/gho/data/node.main.A1636?lang=en Accessed 2016 Dec 18

  2. Takeet MI, Fagbemi BO, De Donato M, Yakubu A, Rodulfo HE, Peters SO, Wheto M, Imumorin IG. Molecular survey of pathogenic trypanosomes in naturally infected Nigerian cattle. Res Vet Sci. 2013;94:555–61. https://doi.org/10.1016/j.rvsc.2012.10.018.

    Article  CAS  PubMed  Google Scholar 

  3. WHO. World Health Organisation. Control and surveillance of African Trypanosomiasis. Geneva: WHO Technical report series881; 1998. p. 114.

    Google Scholar 

  4. Dyer NA, Furtado A, Cano J, Ferreira F, Odete Afonso M, Ndong-Mabale N, Ndong-Asumu P, Centeno-Lima S, Benito A, Weetman D, Donnelly MJ, Pinto J. Evidence for a discrete evolutionary lineage within Equatorial Guinea suggests that the tsetse fly Glossina palpalis palpalis exists as a species complex. Mol Ecol. 2009;18:3268–82. https://doi.org/10.1111/j.1365-294X.2009.04265.x.

    Article  CAS  PubMed  Google Scholar 

  5. Leak SGA. Tsetse biology and ecology: their role in the epidemiology and control of trypanosomiasis. Wallingford: Published in association with the International Livestock Research institute. CABI Publishing; 1998.

    Google Scholar 

  6. Opiro R, Saarman NP, Echodu R, Opiyo EA, Dion K, Halyard A, Dunn AW, Aksoy S, Caccone A. Genetic diversity and population structure of the tsetse fly Glossina fuscipes fuscipes (Diptera: Glossinidae) in Northern Uganda: implications for vector control. PLoS Negl Trop Dis. 2017;11(4):e0005485. https://doi.org/10.1371/journal.pntd.0005485.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gooding RH, Krafsur ES. Tsetse genetics: contributions to biology, systematics, and control of tsetse flies. Ann Rev Entomol. 2005;50:101–23. https://doi.org/10.1146/annurev.ento.50.071803.130443.

    Article  CAS  Google Scholar 

  8. Okoh KE, Ndams IS, Kogi E, Vajime CG. Catch composition of tsetse flies (Diptera: Glossinidae). Am J Appl Sci. 2011;8(11):1067–72.

    Article  Google Scholar 

  9. Orji CU, Onyeocha IO, Shaida SS, Dede PM, Luka PD, Yakubu B, Ella EE. Molecular identification of tsetse fly (Diptera: Glossinidae) species based on mitochondrial DNA (COII and CytB) sequences. Afr J Biotech. 2015;14(19):1605–13. https://doi.org/10.5897/AJB2015.14411.

    Article  CAS  Google Scholar 

  10. Isaac C, Ciosi M, Hamilton A, Scullion KM, Dede P, Igbinosa IB, Nmorsi OPG, Masiga D, Turner CMR. Molecular identification of different trypanosome species and subspecies in tsetse flies of northern Nigeria. Parasit Vector. 2016;9:301. https://doi.org/10.1186/s13071-016-1585-3.

    Article  CAS  Google Scholar 

  11. Odeniran PO, Ademola IO, Macleod ET, Welburn SC. Bovine and small ruminant African animal trypanosomiasis in Nigeria—a review. Vet Parasitol Reg Stud Repts. 2018;13:5–13. https://doi.org/10.1016/j.vprsr.2018.03.001.

    Article  Google Scholar 

  12. Veer V, Parashar BD, Prakash S. Tabanid and muscoid haematophagous flies, vectors of trypanosomiasis or surra disease in wild animals and livestock in Nandankanan Biological Park, Bhubaneswar, Orissa, India. Curr Sci. 2002;82:500–3.

    Google Scholar 

  13. Sumba AL, Mihok S, Oyieke FA. Mechanical transmission of Trypanosoma evansi and T. congolense by Stomoxys niger and Stomoxys taeniatus in a laboratory mouse model. Med Vet Ent. 1998;12:417–22. https://doi.org/10.1046/j.1365-2915.1998.00131.x.

    Article  CAS  Google Scholar 

  14. Desquesnes M, Dia ML. Mechanical transmission of Trypanosoma vivax in cattle by the African tabanid Atylotus fuscipes. Vet Parasitol. 2004;119:9–19. https://doi.org/10.1016/j.vetpar.2003.10.015.

    Article  PubMed  Google Scholar 

  15. Lessard BD, Cameron SL, Bayless KM, Wiegmann BM, Yeates DK. The evolution and biogeography of the austral horse fly tribe Scionini (Diptera: Tabanidae: Pangoniinae) inferred from multiple mitochondrial and nuclear genes. Mol Phylo Evol. 2013;68:516–40. https://doi.org/10.1016/j.ympev.2013.04.030.

    Article  CAS  Google Scholar 

  16. Roskov Y, Kunze T, Paglinawan L, Abucay L, Orrell T, Nicolson D, Culham A, Bailly N, Kirk P, Bourgoin T, Baillargeon G, Decock W, Wever A, Didzˇiulis V. Species 2000 and ITIS catalogue of life. Leiden: Naturalis; 2013.

    Google Scholar 

  17. Krinsky WL. Animal disease agents transmitted by horse flies and deer flies (Diptera: Tabanidae). J Med Entomol. 1976;13(3):225–75. https://doi.org/10.1093/jmedent/13.3.225.

    Article  CAS  PubMed  Google Scholar 

  18. Baldacchino F, Desquesnes M, Mihok S, Foil LD, Duvallet G, Jiltapalapong S. Tabanids: neglected subjects of research, but important vectors of disease agents. Inf Genet Evol. 2014;43:3–29. https://doi.org/10.1016/j.meegid.2014.03.029.

    Article  Google Scholar 

  19. Banerjee D, Kumar V, Maity A, Ghosh B, Tyagi K, Singha D, Kundu S, Laskar BA, Naskar A. Identification through DNA barcoding of Tabanidae (Diptera) vectors of surra disease in India. Acta Trop. 2015;150:52–8. https://doi.org/10.1016/j.actatropica.2015.06.023.

    Article  PubMed  Google Scholar 

  20. Mackerras IM, Spratt DM, Yeates DK. Revision of the horse fly genera Lissimas and Cydistomyia (Diptera: Tabanidae: Diachlorini) of Australia. Zootax. 2008;1886:1–80. https://doi.org/10.11646/zootaxa.1886.1.1.

    Article  Google Scholar 

  21. Odeniran PO, Ademola IO. Alighting and feeding behavior of trypanosome-transmitting vectors on cattle in Nigeria. J Med Ent. 2018;55(6):1594–601. https://doi.org/10.1093/jme/tjy139.

    Article  Google Scholar 

  22. Zumpt F. The STomoxyinae biting flies of the world. Taxonomy, biology, economic importance and control measures. Stuttgart: Gustav Fischer Verlag; 1973. p. 175.

    Google Scholar 

  23. Dsouli-Aymes N, Michaux J, De Stordeur E, Couloux A, Veuille M, Duvallet G. Global population structure of the stable fly (Stomoxys calcitrans) inferred by mitochondrial and nuclear sequence data. Infect Gen Evol. 2011;11:334–42. https://doi.org/10.1016/j.meegid.2010.11.001.

    Article  CAS  Google Scholar 

  24. Masmeatathip R, Gilles J, Ketavan C, Duvallet G. First survey of seasonal abundance and daily activity of Stomoxys spp. (Diptera: Muscidae) in Kamphaengsaen campus. Nakornpathom Prov Thail Parasit. 2006;13:245–50. https://doi.org/10.1051/parasite/2006133245.

    Article  CAS  Google Scholar 

  25. Wall R, Shearer D. Veterinary entomology. London: Springer; 1997. p. 439 (Chapman and Hall Eds).

    Book  Google Scholar 

  26. Campbell JB, Skoda SR, Berkebile DR, Boxler DJ, Thomas GD, Adams DC, Davis R. Effects of stable flies (Diptera: Muscidae) on weight gain of grazing yearling cattle. J Econ Entomol. 2001;94:780–3. https://doi.org/10.1603/0022-0493-94.3.780.

    Article  CAS  PubMed  Google Scholar 

  27. Mihok S, Maramba O, Munyoki E, Kagoiya J. Mechanical transmission of Trypanosoma spp. by African stomoxyinae (Diptera: Muscidae). Trop Med Parasitol. 1995;46(2):103–5.

    CAS  PubMed  Google Scholar 

  28. Baldacchino F, Muenworn V, Desquesnes M, Desoli F, Charoenviriyaphap T, Duvallet G. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): a review. Parasite. 2013;20:26. https://doi.org/10.1051/parasite/2013026.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dipeolu OO. Studies on the incidence, distribution and prevalence of flies of veterinary importance in Nigeria. Bull Anim Hlth Prod Afr. 1977;25(1):33–9.

    Google Scholar 

  30. Ahmed AB, Okiwelu SN, Samdi SM. Species diversity, abundance and seasonal occurrence of some biting flies in southern Kaduna, Nigeria. Afr J Biomed Res. 2005;8:113–8. https://doi.org/10.4314/ajbr.v8i2.35770.

    Article  Google Scholar 

  31. Karshima SN, Ajogi I, Mohammed G, Lawal AI. A survey for biting flies in three local government areas of Taraba State, Nigeria. Sokoto J Vet Sci. 2011;9(1):36–8 (ISSN 1595-093X).

    Google Scholar 

  32. Odeniran PO, Macleod ET, Ademola IO, Welburn SC. Molecular identification of bloodmeal source and trypanosomes in Glossina spp. Tabanus spp. and Stomoxys spp. trapped from cattle from settlements in southwest Nigeria. Med Vet Ent. 2019;33(2):269–81. https://doi.org/10.1111/mve.12358.

    Article  CAS  Google Scholar 

  33. Armstrong KF, Ball SL. DNA barcodes for biosecurity: invasive species identification. Phil Trans R Soc B. 2005;360:1813–23. https://doi.org/10.1098/rstb.2005.1713.

    Article  CAS  PubMed  Google Scholar 

  34. Rugman-Jones PF, Hoddle MS, Stouthamer R. Nuclear-mitochondrial barcoding exposes the global pest western flower thrips (Thysanoptera: Thripidae) as two sympatric cryptic species in its native California. J Econ Ent. 2010;103:877–86. https://doi.org/10.1603/ec09300.

    Article  Google Scholar 

  35. Lessard BD, Yeates DK. Anzomyia (Diptera: Tabanidae: Pangoniinae: Scionini): a new genus of Australian and New Zealand horse fly, including the description of three new species. Insect Syst Evol. 2012;43:101–16. https://doi.org/10.1163/187631212X637526.

    Article  Google Scholar 

  36. Duvallet G, Pont A. Stomoxyine flies from Ethiopia. Vet Parasitol. 2008;153:193–4. https://doi.org/10.1016/j.vetpar.2008.02.010.

    Article  PubMed  Google Scholar 

  37. Mihok S. The development of a multipurpose trap (the Nzi) for tsetse and other biting flies. Bull Ent Res. 2002;92:385–403. https://doi.org/10.1079/BER2002186.

    Article  CAS  Google Scholar 

  38. Challier A, Gouteux J-P, Coosemans M. The geographic boundary between the subspecies Glossina palpalis palpalis (Rob. Desv.) and G. palpalis gambiensis Vanderplank (Diptera: Glossinidae) in West Africa. Ent Med Parasitol. 1983;21(4):207–22.

    Google Scholar 

  39. FAO. Food and Agriculture Organisation of the United Nations. A field guide for the diagnosis, treatment and prevention of African animal trypanosomiasis. Rome: Food and Agriculture Organisation; 2008.

    Google Scholar 

  40. Austen EE (1909) Illustrations of African blood sucking flies other than mosquito and tsetse flies. Department of Zoology, British Museum (Natural History) Biodiversity Heritage Library OAI Repository. https://biodiversitylibrary.org/oai. Accessed 10 Sept 2019

  41. King HH. Some observations on the bionomics of Tabanus par, Walker, and Tabanus taeniola. Pal de Beauv Bull Ent Res. 1910;1(2):99–105. https://doi.org/10.1017/S0007485300042899.

    Article  Google Scholar 

  42. Crosskey RW, Crosskey ME. The horse-flies (Diptera: Tabanidae) of Nigeria and the British Cameroons. Trans R Ent Soc Lond. 1955;106(8):341–72.

    Article  Google Scholar 

  43. Oldroyd H. Horseflies of the Ethiopian region I-III. London: British Museum of Natural History; 1957.

    Google Scholar 

  44. Nigel W, Allan S. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am J Trop Med Hyg. 1995;53(5):478–81. https://doi.org/10.4269/ajtmh.1995.53.478.

    Article  Google Scholar 

  45. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Librado P, Ramos-Onsins SE, Sanchez-Gracia A. DnaSP v6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol. 2017;34:3299–302. https://doi.org/10.1093/molbev/msx248.

    Article  CAS  PubMed  Google Scholar 

  46. Leigh JW, Bryant D. PopART: full-feature software for haplotype network construction. Method Ecol Evol. 2015;6:1110–6. https://doi.org/10.1111/2041-210X.12410.

    Article  Google Scholar 

  47. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–6. https://doi.org/10.1093/molbev/msn083.

    Article  CAS  PubMed  Google Scholar 

  48. Taioe MO, Motloang MY, Namangala B, Chota A, Molefe NI, Musinguzi SP, Suganuma K, Hayes P, Tsilo TJ, Chainey J, Inoue N, Thekisoe OMM. Characterization of tabanid flies (Diptera: Tabanidae) in South Africa and Zambia and detection of protozoan parasites they are harbouring. Parasitol. 2017;144(9):1162–78. https://doi.org/10.1017/S0031182017000440.

    Article  Google Scholar 

  49. Changbunjong T, Sumruayphol S, Weluwanarak T, Ruangsittichai J, Dujardin J-P. Landmark and outline-based geometric morphometrics analysis of three Stomoxys flies (Diptera: Muscidae). Folia Parasitol. 2016;63:037. https://doi.org/10.14411/fp.2016.037.

    Article  Google Scholar 

  50. Marinho MAT, Junqueira ACM, Azeredo-Espin AML. Evaluation of the internal transcribed spacer 2 (ITS2) as a molecular marker for phylogenetic inference using sequence and secondary structure information in blow flies (Diptera: Calliphoridae). Genetica. 2011;139:1189–207. https://doi.org/10.1007/s10709-011-9621-x.

    Article  CAS  PubMed  Google Scholar 

  51. Van Bortel W, Trung HD, Roelants P, Harbach RE, Backeljau T, Coosemans M. Molecular identification of Anopheles minimus s.l. beyond distinguishing the members of the species complex. Insect Mol Biol. 2000;9:335–40. https://doi.org/10.1046/j.1365-2583.2000.00192.x.

    Article  PubMed  Google Scholar 

  52. Itina VI, Noutcha AME, Okiwelu SN. Spatial and temporal distribution of tabanids (Diptera: Tabanidae) in Akwa Ibom State, Nigeria. Res Zool. 2013;3:62–5. https://doi.org/10.5923/j.zoology.20130302.03.

    Article  Google Scholar 

  53. Dyer NA, Lawton SP, Ravel S, Choi KS, Lehane MJ, Robinson AS, Okedi LM, Hall MJR, Solano P, Donnelly MJ. Molecular phylogenetics of tsetse flies (Diptera: Glossinidae) based on mitochondrial (COI, 16S, ND2) and nuclear ribosomal DNA sequences, with an emphasis on the palpalis group. Mol Phylo Evol. 2008;49:227–39. https://doi.org/10.1016/j.ympev.2008.07.011.

    Article  CAS  Google Scholar 

  54. Van den Bossche P, de la Rocque SG, Hendrickx G, Bouyer J. A changing environment and the epidemiology of tsetse-transmitted livestock trypanosomiasis. Trends Parasitol. 2010;26(5):236–43. https://doi.org/10.1016/j.pt.2010.02.010.

    Article  PubMed  Google Scholar 

  55. Rogers DJ, Randolph SE. Distribution and abundance of tsetse flies (Glossina spp). J Anim Ecol. 1986;55(3):1007–255. https://doi.org/10.2307/4430.

    Article  Google Scholar 

  56. Odeniran PO, Ademola IO. A meta-analysis of African animal trypanosomiasis in Nigeria between 1960 to 2017. Parasit Vector. 2018;11:280. https://doi.org/10.1186/s13071-018-2801-0.

    Article  Google Scholar 

  57. Morita SI, Bayless KM, Yeates DK, Wiegmann BM. Molecular phylogeny of the horse flies: a framework for renewing tabanid taxonomy. Syst Entomol. 2016;41:56–72. https://doi.org/10.1111/syen.12145.

    Article  Google Scholar 

  58. Bitome-Essono PY, Dechaume-Moncharmont F-X, Mavoungou J, Mba RO, Duvallet G, Bretagnolle F. Distribution and abundance of haematopagous flies (Glossinidae, Stomoxys and Tabanidae) in two national parks of Gabon. Parasite. 2015;22:23. https://doi.org/10.1051/parasite/2015023.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Odeniran PO, MacLeod ET, Ademola IO, Welburn SC. Practices of cattle keepers of southwest Nigeria in relation to bovine trypanosomosis. Trop Anm Hlth Prod. 2018;51(8):2117–266. https://doi.org/10.1007/s11250-018-1694-4.

    Article  Google Scholar 

  60. Odeniran PO, MacLeod ET, Ademola IO, Welburn SC. Molecular identification of bovine trypanosomes in relation to cattle sources in southwest Nigeria. Parasitol Int. 2019;68:1–8. https://doi.org/10.1016/j.parint.2018.09.005.

    Article  CAS  PubMed  Google Scholar 

  61. Cordon-Obras C, Cano J, Knapp J, et al. Glossina palpalis palpalis populations from Equatorial Guinea belong to distinct allopatric clades. Parasit Vector. 2014;7:31. https://doi.org/10.1186/1756-3305-7-31.

    Article  Google Scholar 

Download references

Acknowledgements

We extend our sincere appreciation to livestock owners and support staff in southwest Nigeria for their assistance during this study. This study was supported by Commonwealth Scholarship Commission and The University of Edinburgh, United Kingdom. Paul O. Odeniran is a Commonwealth scholar, funded by the UK government (reference number NGCN-2016-196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Olalekan Odeniran.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Ethical Approval

The study was conducted with the permission of the University of Ibadan Animal Ethics Committee (UI-ACUREC/App/12/2016/05) in line with the guidelines of the committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odeniran, P.O., Macleod, E.T., Ademola, I.O. et al. Morphological, Molecular Identification and Distribution of Trypanosome-Transmitting Dipterans from Cattle Settlements in Southwest Nigeria. Acta Parasit. 66, 116–128 (2021). https://doi.org/10.1007/s11686-020-00260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-020-00260-9

Keywords

Navigation