Skip to main content
Log in

Multi-omics joint analysis revealed the metabolic profile of retroperitoneal liposarcoma

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Retroperitoneal liposarcoma (RLPS) is the main subtype of retroperitoneal soft sarcoma (RSTS) and has a poor prognosis and few treatment options, except for surgery. The proteomic and metabolic profiles of RLPS have remained unclear. The aim of our study was to reveal the metabolic profile of RLPS. Here, we performed proteomic analysis (n = 10), metabolomic analysis (n = 51), and lipidomic analysis (n = 50) of retroperitoneal dedifferentiated liposarcoma (RDDLPS) and retroperitoneal well-differentiated liposarcoma (RWDLPS) tissue and paired adjacent adipose tissue obtained during surgery. Data analysis mainly revealed that glycolysis, purine metabolism, pyrimidine metabolism and phospholipid formation were upregulated in both RDDLPS and RWDLPS tissue compared with the adjacent adipose tissue, whereas the tricarboxylic acid (TCA) cycle, lipid absorption and synthesis, fatty acid degradation and biosynthesis, as well as glycine, serine, and threonine metabolism were downregulated. Of particular importance, the glycolytic inhibitor 2-deoxy-D-glucose and pentose phosphate pathway (PPP) inhibitor RRX-001 significantly promoted the antitumor effects of the MDM2 inhibitor RG7112 and CDK4 inhibitor abemaciclib. Our study not only describes the metabolic profiles of RDDLPS and RWDLPS, but also offers potential therapeutic targets and strategies for RLPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004; 36(4): 568–584

    Article  PubMed  CAS  Google Scholar 

  2. Improta L, Tzanis D, Bouhadiba T, Abdelhafidh K, Bonvalot S. Overview of primary adult retroperitoneal tumours. Eur J Surg Oncol 2020; 46(9): 1573–1579

    Article  PubMed  Google Scholar 

  3. Carbone F, Pizzolorusso A, Di Lorenzo G, Di Marzo M, Cannella L, Barretta ML, Delrio P, Tafuto S. Multidisciplinary management of retroperitoneal sarcoma: diagnosis, prognostic factors and treatment. Cancers (Basel) 2021; 13(16): 4016

    Article  PubMed  CAS  Google Scholar 

  4. Pedeutour F, Forus A, Coindre JM, Berner JM, Nicolo G, Michiels JF, Terrier P, Ranchere-Vince D, Collin F, Myklebost O, Turc-Carel C. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 1999; 24(1): 30–41

    Article  PubMed  CAS  Google Scholar 

  5. Lu J, Wood D, Ingley E, Koks S, Wong D. Update on genomic and molecular landscapes of well-differentiated liposarcoma and dedifferentiated liposarcoma. Mol Biol Rep 2021; 48(4): 3637–3647

    Article  PubMed  CAS  Google Scholar 

  6. Eisenberg L, Eisenberg-Bord M, Eisenberg-Lerner A, Sagi-Eisenberg R. Metabolic alterations in the tumor microenvironment and their role in oncogenesis. Cancer Lett 2020; 484: 65–71

    Article  PubMed  CAS  Google Scholar 

  7. Coutzac C, Jouniaux JM, Paci A, Schmidt J, Mallardo D, Seck A, Asvatourian V, Cassard L, Saulnier P, Lacroix L, Woerther PL, Vozy A, Naigeon M, Nebot-Bral L, Desbois M, Simeone E, Mateus C, Boselli L, Grivel J, Soularue E, Lepage P, Carbonnel F, Ascierto PA, Robert C, Chaput N. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun 2020; 11(1): 2168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 2016; 16(10): 635–649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 2015; 15(9): 540–555

    Article  PubMed  CAS  Google Scholar 

  10. RodrÍguez E, Schetters STT, van Kooyk Y. The tumour glycocode as a novel immune checkpoint for immunotherapy. Nat Rev Immunol 2018; 18(3): 204–211

    Article  PubMed  Google Scholar 

  11. DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab 2020; 2(2): 127–129

    Article  PubMed  Google Scholar 

  12. Vasan K, Werner M, Chandel NS. Mitochondrial metabolism as a target for cancer therapy. Nat Metab 2020; 32(3): 341–352

    CAS  Google Scholar 

  13. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014; 510(7504): 298–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nogueira V, Hay N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 2013; 19(16): 4309–4314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science 2015; 348(6230): 74–80

    Article  PubMed  CAS  Google Scholar 

  16. Li F, Simon MC. Cancer cells don’t live alone: metabolic communication within tumor microenvironments. Dev Cell 2020; 54(2): 183–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest 2013; 123(9): 3685–3692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Zhan, Yanxiang Guo J, White E, Rabinowitz JD. Glucose feeds the TCA cycle via circulating lactate. Nature 2017; 551(7678): 115–118

    Article  PubMed  PubMed Central  Google Scholar 

  19. Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk AV, Rittenhouse NL, DePeaux K, Whetstone RD, Vignali DAA, Hand TW, Poholek AC, Morrison BM, Rothstein JD, Wendell SG, Delgoffe GM. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021; 591(7851): 645–651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, Lee YS, Jeong KS, Kim WB, Park JW, Song BJ, Huhe TL. Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 2001; 276(19): 16168–16176

    Article  PubMed  CAS  Google Scholar 

  21. Hishikawa D, Hashidate T, Shimizu T, Shindou H. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J Lipid Res 2014; 55(5): 799–807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science 2010; 327(5961): 46–50

    Article  PubMed  CAS  Google Scholar 

  23. Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer 2016; 16(11): 718–731

    Article  PubMed  CAS  Google Scholar 

  24. Sehdev A, Shih YC, Huo D, Vekhter B, Lyttle C, Polite B. The role of statins for primary prevention in non-elderly colorectal cancer patients. Anticancer Res 2014; 34(9): 5043–5050

    PubMed  CAS  Google Scholar 

  25. Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol 2016; 26(3): 165–176

    Article  PubMed  CAS  Google Scholar 

  26. Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G, Stockwell BR. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol 2015; 10(7): 1604–1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang B, Tontonoz P. Phospholipid remodeling in physiology and disease. Annu Rev Physiol 2019; 81(1): 165–188

    Article  PubMed  Google Scholar 

  28. Chamberlain F, Benson C, Thway K, Huang P, Jones RL, Gennatas S. Pharmacotherapy for liposarcoma: current and emerging synthetic treatments. Future Oncol 2021; 17(20): 2659–2670

    Article  PubMed  CAS  Google Scholar 

  29. Zhu Z, Jiang W, McGinley JN, Thompson HJ. 2-Deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res 2005; 65(15): 7023–7030

    Article  PubMed  CAS  Google Scholar 

  30. Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN, Rocha Lima CM, Schlesselman JJ, Tolba K, Langmuir VK, Kroll S, Jung DT, Kurtoglu M, Rosenblatt J, Lampidis TJ. A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 2013; 71(2): 523–530

    Article  PubMed  CAS  Google Scholar 

  31. Cabrales P. RRx-001 acts as a dual small molecule checkpoint inhibitor by downregulating CD47 on cancer cells and SIRP-alpha on monocytes/macrophages. Transl Oncol 2019; 12(4): 626–632

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Haiping Zheng at the Central laboratory, School of Medicine, Xiamen University for providing scientific and technical support. We also thank LetPub for its linguistic assistance during the preparation of this manuscript.

This research was funded by grants from the National Natural Science Foundation of China (No. 82272935 to Wengang Li., Nos. 91957120 and 21974114 to Shuhai Lin.), the Scientific Research Foundation for Advanced Talents, Xiang’an Hospital of Xiamen University (No. PM20180917008 to Wengang Li.), Joint laboratory of School of Medicine, Xiamen University-Shanghai Jiangxia Blood Technology Co. Ltd. (No. XDHT2020010C to Wengang Lin and Ye Shen.), the Fundamental Research Funds for the Central Universities (No. 20720210001 to Shuhai Lin.), Major Science and Technology Special Project of Fujian Province (No. 2022YZ036012 to Shuhai Lin), and Natural Science Foundation of Fujian Province (No. 2021J01123522 to Zhigang Zheng).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Wu, Chenghua Luo, Shu-Hai Lin or Wengang Li.

Ethics declarations

Fu’an Xie, Yujia Niu, Lanlan Lian, Yue Wang, Aobo Zhuang, Guangting Yan, Yantao Ren, Xiaobing Chen, Mengmeng Xiao, Xi Li, Zhe Xi, Gen Zhang, Dongmei Qin, Kunrong Yang, Zhigang Zheng, Quan Zhang, Xiaogang Xia, Peng Li, Lingwei Gu, Ting Wu, Chenghua Luo, Shu-Hai Lin, and Wengang Li declare no conflict of interest associated with this publication.

The study was approved by the ethics committee of all participating institutions, including the Xiang’an Hospital of Xiamen University (No. XAHLL2021024) and Peking University International Hospital (No. WA2020RW29). The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. We obtained written informed consent from all participants, except for those we could not contact due to lack of follow-up. In these cases, the institutional review boards at each participating institution granted permission for existing tissue samples to be used for research purposes.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., Niu, Y., Lian, L. et al. Multi-omics joint analysis revealed the metabolic profile of retroperitoneal liposarcoma. Front. Med. (2023). https://doi.org/10.1007/s11684-023-1020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11684-023-1020-z

Keywords

Navigation