Skip to main content
Log in

Fine-tuning cell organelle dynamics during mitosis by small GTPases

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

During mitosis, the allocation of genetic material concurs with organelle transformation and distribution. The coordination of genetic material inheritance with organelle dynamics directs accurate mitotic progression, cell fate determination, and organismal homeostasis. Small GTPases belonging to the Ras superfamily regulate various cell organelles during division. Being the key regulators of membrane dynamics, the dysregulation of small GTPases is widely associated with cell organelle disruption in neoplastic and non-neoplastic diseases, such as cancer and Alzheimer’s disease. Recent discoveries shed light on the molecular properties of small GTPases as sophisticated modulators of a remarkably complex and perfect adaptors for rapid structure reformation. This review collects current knowledge on small GTPases in the regulation of cell organelles during mitosis and highlights the mediator role of small GTPase in transducing cell cycle signaling to organelle dynamics during mitosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Champion L, Linder MI, Kutay U. Cellular reorganization during mitotic entry. Trends Cell Biol 2017; 27(1): 26–41

    Article  PubMed  Google Scholar 

  2. Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21(3): 151–166

    Article  CAS  PubMed  Google Scholar 

  3. Jongsma MLM, Berlin I, Neefjes J. On the move: organelle dynamics during mitosis. Trends Cell Biol 2015; 25(3): 112–124

    Article  CAS  PubMed  Google Scholar 

  4. Song S, Cong W, Zhou S, Shi Y, Dai W, Zhang H, Wang X, He B, Zhang Q. Small GTPases: structure, biological function and its interaction with nanoparticles. Asian J Pharm Sci 2019; 14(1): 30–39

    Article  PubMed  Google Scholar 

  5. Vetter IR. The structure of the G domain of the Ras superfamily. In: Wittinghofer A. Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer Vienna, 2014: 25–50

    Google Scholar 

  6. Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci 2005; 118(5): 843–846

    Article  CAS  PubMed  Google Scholar 

  7. Hodge RG, Schaefer A, Howard SV, Der CJ. RAS and RHO family GTPase mutations in cancer: twin sons of different mothers? Crit Rev Biochem Mol Biol 2020; 55(4): 386–407

    Article  CAS  PubMed  Google Scholar 

  8. Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012; 196: 189–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013; 93(1): 269–309

    Article  CAS  PubMed  Google Scholar 

  10. Bos J, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007; 129(5): 865–877 Erratum in: Cell 2007; 130(2): 385

    Article  CAS  PubMed  Google Scholar 

  11. Cherfils J. GEFs and GAPs: mechanisms and structures. In: Wittinghofer A. Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer Vienna; 2014: 51–63

    Google Scholar 

  12. Mishra AK, Lambright DG. Small GTPases and their GAPs. Biopolymers 2016; 105(8): 431–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clarke PR, Zhang C. Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 2008; 9(6): 464–477

    Article  CAS  PubMed  Google Scholar 

  14. Jackson CL, Bouvet S. Arfs at a glance. J Cell Sci 2014; 127(19): 4103–4109

    CAS  PubMed  Google Scholar 

  15. Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A. Rab GTPases at a glance. J Cell Sci 2007; 120(22): 3905–3910

    Article  CAS  PubMed  Google Scholar 

  16. D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006; 7(5): 347–358

    Article  PubMed  CAS  Google Scholar 

  17. Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. Biochim Biophys Acta Mol Cell Res 2018; 1865(10): 1397–1409

    Article  CAS  PubMed  Google Scholar 

  18. Bannykh SI, Plutner H, Matteson J, Balch WE. The role of ARF1 and rab GTPases in polarization of the Golgi stack. Traffic 2005; 6(9): 803–819

    Article  CAS  PubMed  Google Scholar 

  19. Yahara N, Ueda T, Sato K, Nakano A. Multiple roles of Arf1 GTPase in the yeast exocytic and endocytic pathways. Mol Biol Cell 2001; 12(1): 221–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donaldson JG, Honda A, Weigert R. Multiple activities for Arf1 at the Golgi complex. Biochim Biophys Acta 2005; 1744(3): 364–373

    Article  CAS  PubMed  Google Scholar 

  21. Kashatus DF, Lim KH, Brady DC, Pershing NLKK, Cox AD, Counter CM. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 2011; 13(9): 1108–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shinde SR, Maddika S. Post translational modifications of Rab GTPases. Small GTPases 2018; 9(1–2): 49–56

    Article  CAS  PubMed  Google Scholar 

  23. Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 2016; 17(8): 496–510

    Article  CAS  PubMed  Google Scholar 

  24. Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2001; 2(1): 21–32

    Article  CAS  PubMed  Google Scholar 

  25. Dao VT, Dupuy AG, Gavet O, Caron E, de Gunzburg J. Dynamic changes in Rap1 activity are required for cell retraction and spreading during mitosis. J Cell Sci 2009; 122(16): 2996–3004

    Article  CAS  PubMed  Google Scholar 

  26. Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature 1991; 349(6305): 132–138

    Article  CAS  PubMed  Google Scholar 

  27. Lei Z, Wang J, Zhang L, Liu CH. Ubiquitination-dependent regulation of small GTPases in membrane trafficking: from cell biology to human diseases. Front Cell Dev Biol 2021; 9: 688352

    Article  PubMed  PubMed Central  Google Scholar 

  28. de la Vega M, Burrows JF, Johnston JA. Ubiquitination: added complexity in Ras and Rho family GTPase function. Small GTPases 2011; 2(4): 192–201

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ding F, Yin Z, Wang HR. Ubiquitination in Rho signaling. Curr Top Med Chem 2011; 11(23): 2879–2887

    Article  CAS  PubMed  Google Scholar 

  30. Song P, Trajkovic K, Tsunemi T, Krainc D. Parkin modulates endosomal organization and function of the endo-lysosomal pathway. J Neurosci 2016; 36(8): 2425–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang H-R, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003; 302(5651): 1775–1779

    Article  CAS  PubMed  Google Scholar 

  32. Seabra MC, Goldstein JL, Südhof TC, Brown MS. Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. J Biol Chem 1992; 267(20): 14497–14503

    Article  CAS  PubMed  Google Scholar 

  33. Leung KF, Baron R, Ali BR, Magee AI, Seabra MC. Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J Biol Chem 2007; 282(2): 1487–1497

    Article  CAS  PubMed  Google Scholar 

  34. Heald R, Khodjakov A. Thirty years of search and capture: the complex simplicity of mitotic spindle assembly. J Cell Biol 2015; 211(6): 1103–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Connell CB, Khodjakov AL. Cooperative mechanisms of mitotic spindle formation. J Cell Sci 2007; 120(10): 1717–1722

    Article  PubMed  CAS  Google Scholar 

  36. Lavia P. The GTPase RAN regulates multiple steps of the centrosome life cycle. Chromosome Res 2016; 24(1): 53–65

    Article  CAS  PubMed  Google Scholar 

  37. Feng Y, Yuan JH, Maloid SC, Fisher R, Copeland TD, Longo DL, Conrads TP, Veenstra TD, Ferris A, Hughes S, Dimitrov DS, Ferris DK. Polo-like kinase 1-mediated phosphorylation of the GTP-binding protein Ran is important for bipolar spindle formation. Biochem Biophys Res Commun 2006; 349(1): 144–152

    Article  CAS  PubMed  Google Scholar 

  38. Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N. Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol 2010; 190(5): 807–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tedeschi A, Ciciarello M, Mangiacasale R, Roscioli E, Rensen WM, Lavia P. RANBP1 localizes a subset of mitotic regulatory factors on spindle microtubules and regulates chromosome segregation in human cells. J Cell Sci 2007; 120(21): 3748–3761

    Article  CAS  PubMed  Google Scholar 

  40. Sit ST, Manser E. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 2011; 124(5): 679–683

    Article  CAS  PubMed  Google Scholar 

  41. Müller PM, Rademacher J, Bagshaw RD, Wortmann C, Barth C, van Unen J, Alp KM, Giudice G, Eccles RL, Heinrich LE, Pascual-Vargas P, Sanchez-Castro M, Brandenburg L, Mbamalu G, Tucholska M, Spatt L, Czajkowski MT, Welke RW, Zhang S, Nguyen V, Rrustemi T, Trnka P, Freitag K, Larsen B, Popp O, Mertins P, Gingras AC, Roth FP, Colwill K, Bakal C, Pertz O, Pawson T, Petsalaki E, Rocks O. Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions. Nat Cell Biol 2020; 22(4): 498–511

    Article  PubMed  CAS  Google Scholar 

  42. Chircop M. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases 2014; 5(2): e29770

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yasuda S, Taniguchi H, Oceguera-Yanez F, Ando Y, Watanabe S, Monypenny J, Narumiya S. An essential role of Cdc42-like GTPases in mitosis of HeLa cells. FEBS Lett 2006; 580(14): 3375–3380

    Article  CAS  PubMed  Google Scholar 

  44. Miserey-Lenkei S, Colombo MI. Small RAB GTPases regulate multiple steps of mitosis. Front Cell Dev Biol 2016; 4: 2

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lanzetti L. A novel function of Rab5 in mitosis. Small GTPases 2012; 3(3): 168–172

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hehnly H, Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev Cell 2014; 28(5): 497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hobdy-Henderson KC, Hales CM, Lapierre LA, Cheney RE, Goldenring JR. Dynamics of the apical plasma membrane recycling system during cell division. Traffic 2003; 4(10): 681–693

    Article  CAS  PubMed  Google Scholar 

  48. Zhou C, Cunningham L, Marcus AI, Li Y, Kahn RA. Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 2006; 17(5): 2476–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Okai T, Araki Y, Tada M, Tateno T, Kontani K, Katada T. Novel small GTPase subfamily capable of associating with tubulin is required for chromosome segregation. J Cell Sci 2004; 117(20): 4705–4715

    Article  CAS  PubMed  Google Scholar 

  50. Papini D, Langemeyer L, Abad MA, Kerr A, Samejima I, Eyers PA, Jeyaprakash AA, Higgins JMG, Barr FA, Earnshaw WC. TD-60 links RalA GTPase function to the CPC in mitosis. Nat Commun 2015; 6(1): 7678

    Article  PubMed  Google Scholar 

  51. Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M. Protein phase separation: a new phase in cell biology. Trends Cell Biol 2018; 28(6): 420–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang C, Rabouille C. Membrane-bound meet membraneless in health and disease. Cells 2019; 8(9): 1000

    Article  CAS  PubMed Central  Google Scholar 

  53. Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 2015; 57(5): 936–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gomes E, Shorter J. The molecular language of membraneless organelles. J Biol Chem 2019; 294(18): 7115–7127

    Article  CAS  PubMed  Google Scholar 

  55. Rai AK, Chen JXX, Selbach M, Pelkmans L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 2018; 559(7713): 211–216

    Article  CAS  PubMed  Google Scholar 

  56. Jiang H, Wang S, Huang Y, He X, Cui H, Zhu X, Zheng Y. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 2015; 163(1): 108–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Woodruff JB, Ferreira Gomes B, Widlund PO, Mahamid J, Honigmann A, Hyman AA. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 2017; 169(6): 1066–1077.e10

    Article  CAS  PubMed  Google Scholar 

  58. Keryer G, Witczak O, Delouvée A, Kemmner WA, Rouillard D, Taskén K, Bornens M. Dissociating the centrosomal matrix protein AKAP450 from centrioles impairs centriole duplication and cell cycle progression. Mol Biol Cell 2003; 14(6): 2436–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Keryer G, Di Fiore B, Celati C, Lechtreck KF, Mogensen M, Delouvée A, Lavia P, Bornens M, Tassin AM. Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activity. Mol Biol Cell 2003; 14(10): 4260–4271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bompard G, Rabeharivelo G, Cau J, Abrieu A, Delsert C, Morin N. P21-activated kinase 4 (PAK4) is required for metaphase spindle positioning and anchoring. Oncogene 2013; 32(7): 910–919

    Article  CAS  PubMed  Google Scholar 

  61. Kilchert C, Weidner J, Prescianotto-Baschong C, Spang A. Defects in the secretory pathway and high Ca2+ induce multiple P-bodies. Mol Biol Cell 2010; 21(15): 2624–2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Serio G, Margaria V, Jensen S, Oldani A, Bartek J, Bussolino F, Lanzetti L. Small GTPase Rab5 participates in chromosome congression and regulates localization of the centromere-associated protein CENP-F to kinetochores. Proc Natl Acad Sci USA 2011; 108(42): 17337–17342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang X, Hagen J, Muniz VP, Smith T, Coombs GS, Eischen CM, Mackie DI, Roman DL, Van Rheeden R, Darbro B, Tompkins VS, Quelle DE. RABL6A, a novel RAB-like protein, controls centrosome amplification and chromosome instability in primary fibroblasts. PLoS One 2013; 8(11): e80228

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hehnly H, Chen CTT, Powers CM, Liu HLL, Doxsey S. The centrosome regulates the Rab11-dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol 2012; 22(20): 1944–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Takahashi S, Takei T, Koga H, Takatsu H, Shin HW, Nakayama K. Distinct roles of Rab11 and Arf6 in the regulation of Rab11-FIP3/arfophilin-1 localization in mitotic cells. Genes Cells 2011; 16(9): 938–950

    Article  CAS  PubMed  Google Scholar 

  66. Champion L, Linder MI, Kutay U. Cellular reorganization during mitotic entry. Trends Cell Biol 2017; 27(1): 26–41

    Article  PubMed  Google Scholar 

  67. Ramkumar N, Baum B. Coupling changes in cell shape to chromosome segregation. Nat Rev Mol Cell Biol 2016; 17(8): 511–521

    Article  CAS  PubMed  Google Scholar 

  68. Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML, Garcia-Manyes S, Eggert US. Dividing cells regulate their lipid composition and localization. Cell 2014; 156(3): 428–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Storck EM, Özbalci C, Eggert US. Lipid cell biology: a focus on lipids in cell division. Annu Rev Biochem 2018; 87(1): 839–869

    Article  CAS  PubMed  Google Scholar 

  70. Théry M, Bornens M. Get round and stiff for mitosis. HFSP J 2008; 2(2): 65–71

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem 2009; 284(8): 5119–5127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lafuente EM, van Puijenbroek AAFL, Krause M, Carman CV, Freeman GJ, Berezovskaya A, Constantine E, Springer TA, Gertler FB, Boussiotis VA. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell 2004; 7(4): 585–595

    Article  CAS  PubMed  Google Scholar 

  73. Marchesi S, Montani F, Deflorian G, D’Antuono R, Cuomo A, Bologna S, Mazzoccoli C, Bonaldi T, Di Fiore PP, Nicassio F. DEPDC1B coordinates de-adhesion events and cell-cycle progression at mitosis. Dev Cell 2014; 31(4): 420–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lancaster OM, Le Berre M, Dimitracopoulos A, Bonazzi D, Zlotek-Zlotkiewicz E, Picone R, Duke T, Piel M, Baum B. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev Cell 2013; 25(3): 270–283

    Article  CAS  PubMed  Google Scholar 

  75. Chugh P, Paluch EK. The actin cortex at a glance. J Cell Sci 2018; 131(14): jcs186254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Arnold TR, Stephenson RE, Miller AL. Rho GTPases and actomyosin: partners in regulating epithelial cell-cell junction structure and function. Exp Cell Res 2017; 358(1): 20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rosa A, Vlassaks E, Pichaud F, Baum B. Ect2/Pbl acts via Rho and polarity proteins to direct the assembly of an isotropic actomyosin cortex upon mitotic entry. Dev Cell 2015; 32(5): 604–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mierzwa B, Gerlich DW. Cytokinetic abscission: molecular mechanisms and temporal control. Dev Cell 2014; 31(5): 525–538

    Article  CAS  PubMed  Google Scholar 

  79. Pollard TD, O’Shaughnessy B. Molecular mechanism of cytokinesis. Annu Rev Biochem 2019; 88(1): 661–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Neto H, Collins LL, Gould GW. Vesicle trafficking and membrane remodelling in cytokinesis. Biochem J 2011; 437(1): 13–24

    Article  CAS  PubMed  Google Scholar 

  81. Kiyomitsu T, Cheeseman IM. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell 2013; 154(2): 391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kiyomitsu T, Cheeseman IM. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 2012; 14(3): 311–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bird SL, Heald R, Weis K. RanGTP and CLASP1 cooperate to position the mitotic spindle. Mol Biol Cell 2013; 24(16): 2506–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Queralt E, Uhlmann F. Cdk-counteracting phosphatases unlock mitotic exit. Curr Opin Cell Biol 2008; 20(6): 661–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Baumann O, Walz B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol 2001; 205: 149–214

    Article  CAS  PubMed  Google Scholar 

  86. Friedman JR, Voeltz GK. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol 2011; 21(12): 709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Westrate LM, Lee JE, Prinz WA, Voeltz GK. Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem 2015; 84(1): 791–811

    Article  CAS  PubMed  Google Scholar 

  88. Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 2016; 73(1): 79–94

    Article  CAS  PubMed  Google Scholar 

  89. English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 2013; 5(4): a013227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Merta H, Carrasquillo Rodríguez JW, Anjur-Dietrich MI, Vitale T, Granade ME, Harris TE, Needleman DJ, Bahmanyar S. Cell cycle regulation of ER membrane biogenesis protects against chromosome missegregation. Dev Cell 2021; 56(24): 3364–3379.e10

    Article  CAS  PubMed  Google Scholar 

  91. Oertle T, Klinger M, Stuermer CAO, Schwab ME. A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J 2003; 17(10): 1238–1247

    Article  CAS  PubMed  Google Scholar 

  92. Di Sano F, Bernardoni P, Piacentini M. The reticulons: guardians of the structure and function of the endoplasmic reticulum. Exp Cell Res 2012; 318(11): 1201–1207

    Article  CAS  PubMed  Google Scholar 

  93. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 2006; 124(3): 573–586

    Article  CAS  PubMed  Google Scholar 

  94. Gerondopoulos A, Bastos RN, Yoshimura S, Anderson R, Carpanini S, Aligianis I, Handley MT, Barr FA. Rab18 and a Rab18 GEF complex are required for normal ER structure. J Cell Biol 2014; 205(5): 707–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. English AR, Voeltz GK. Rab10 GTPase regulates ER dynamics and morphology. Nat Cell Biol 2013; 15(2): 169–178

    Article  CAS  PubMed  Google Scholar 

  96. Morohashi Y, Balklava Z, Ball M, Hughes H, Lowe M. Phosphorylation and membrane dissociation of the ARF exchange factor GBF1 in mitosis. Biochem J 2010; 427(3): 401–412

    Article  CAS  PubMed  Google Scholar 

  97. Kumar D, Golchoubian B, Belevich I, Jokitalo E, Schlaitz ALL. REEP3 and REEP4 determine the tubular morphology of the endoplasmic reticulum during mitosis. Mol Biol Cell 2019; 30(12): 1377–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schlaitz AL, Thompson J, Wong CCLL, Yates JR 3rd, Heald R. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev Cell 2013; 26(3): 315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Arnone JT, Walters AD, Cohen-Fix O. The dynamic nature of the nuclear envelope: lessons from closed mitosis. Nucleus 2013; 4(4): 261–266

    Article  PubMed  PubMed Central  Google Scholar 

  100. LaJoie D, Ullman KS. Coordinated events of nuclear assembly. Curr Opin Cell Biol 2017; 46: 39–45

    Article  CAS  PubMed  Google Scholar 

  101. Vietri M, Stenmark H, Campsteijn C. Closing a gap in the nuclear envelope. Curr Opin Cell Biol 2016; 40: 90–97

    Article  CAS  PubMed  Google Scholar 

  102. Hetzer MW. The nuclear envelope. Cold Spring Harb Perspect Biol 2010; 2(3): a000539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Prunuske AJ, Ullman KS. The nuclear envelope: form and reformation. Curr Opin Cell Biol 2006; 18(1): 108–116

    Article  CAS  PubMed  Google Scholar 

  104. Peter M, Nakagawa J, Dorée M, Labbé JC, Nigg EA. Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 1990; 60(5): 791–801

    Article  CAS  PubMed  Google Scholar 

  105. Heald R, McKeon F. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 1990; 61(4): 579–589

    Article  CAS  PubMed  Google Scholar 

  106. Torvaldson E, Kochin V, Eriksson JE. Phosphorylation of lamins determine their structural properties and signaling functions. Nucleus 2015; 6(3): 166–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Martinez de Ilarduya O, Vicente-Carbajosa J, Sanchez de la Hoz P, Carbonero P. Sucrose synthase genes in barley. cDNA cloning of the Ss2 type and tissue-specific expression of Ss1 and Ss2. FEBS Lett 1993; 320(2): 177–181

    Article  CAS  PubMed  Google Scholar 

  108. Audhya A, Desai A, Oegema K. A role for Rab5 in structuring the endoplasmic reticulum. J Cell Biol 2007; 178(1): 43–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nielsen E, Severin F, Backer JM, Hyman AA, Zerial M. Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1999; 1(6): 376–382

    Article  CAS  PubMed  Google Scholar 

  110. Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 1992; 70(5): 715–728

    Article  CAS  PubMed  Google Scholar 

  111. Cavazza T, Vernos I. The RanGTP pathway: from nucleocytoplasmic transport to spindle assembly and beyond. Front Cell Dev Biol 2016; 3: 82

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wesolowska N, Avilov I, Machado P, Geiss C, Kondo H, Mori M, Lénárt P. Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes. eLife 2020; 9: e49774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Penfield L, Wysolmerski B, Mauro M, Farhadifar R, Martinez MA, Biggs R, Wu HY, Broberg C, Needleman D, Bahmanyar S. Dynein pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair. Mol Biol Cell 2018; 29(7): 852–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mühlhäusser P, Kutay U. An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. J Cell Biol 2007; 178(4): 595–610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 2002; 108(1): 83–96

    Article  CAS  PubMed  Google Scholar 

  116. Salina D, Bodoor K, Eckley DMM, Schroer TA, Rattner JBB, Burke B. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 2002; 108(1): 97–107

    Article  CAS  PubMed  Google Scholar 

  117. Sullivan M, Morgan DO. Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 2007; 8(11): 894–903

    Article  CAS  PubMed  Google Scholar 

  118. Zhang C, Clarke PR. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 2000; 288(5470): 1429–1432

    Article  CAS  PubMed  Google Scholar 

  119. Hetzer M, Gruss OJ, Mattaj IW. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol 2002; 4(7): E177–E184

    Article  CAS  PubMed  Google Scholar 

  120. Bamba C, Bobinnec Y, Fukuda M, Nishida E. The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo. Curr Biol 2002; 12(6): 503–507

    Article  CAS  PubMed  Google Scholar 

  121. Hetzer M, Bilbao-Cortés D, Walther TC, Gruss OJ, Mattaj IW. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 2000; 5(6): 1013–1024

    Article  CAS  PubMed  Google Scholar 

  122. Schellhaus AK, De Magistris P, Antonin W. Nuclear reformation at the end of mitosis. J Mol Biol 2016; 428(10Pt A): 1962–1985

    Article  CAS  PubMed  Google Scholar 

  123. Matchett KB, McFarlane S, Hamilton SE, Eltuhamy YSA, Davidson MA, Murray JT, Faheem AM, El-Tanani M. Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis. Adv Exp Med Biol 2014; 773: 323–351

    Article  CAS  PubMed  Google Scholar 

  124. Townley AK, Feng Y, Schmidt K, Carter DA, Porter R, Verkade P, Stephens DJ. Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J Cell Sci 2008; 121(18): 3025–3034

    Article  CAS  PubMed  Google Scholar 

  125. Siniossoglou S, Lutzmann M, Santos-Rosa H, Leonard K, Mueller S, Aebi U, Hurt E. Structure and assembly of the Nup84p complex. J Cell Biol 2000; 149(1): 41–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lu MS, Drubin DG. Cdc42 GTPase regulates ESCRTs in nuclear envelope sealing and ER remodeling. J Cell Biol 2020; 219(8): e201910119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen X, Simon ES, Xiang Y, Kachman M, Andrews PC, Wang Y. Quantitative proteomics analysis of cell cycle-regulated Golgi disassembly and reassembly. J Biol Chem 2010; 285(10): 7197–7207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Klumperman J. Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol 2011; 3(7): a005181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Xiang Y, Wang Y. GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J Cell Biol 2010; 188(2): 237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Colanzi A, Corda D. Mitosis controls the Golgi and the Golgi controls mitosis. Curr Opin Cell Biol 2007; 19(4): 386–393

    Article  CAS  PubMed  Google Scholar 

  131. Tang D, Wang Y. Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol 2013; 23(6): 296–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Valente C, Colanzi A. Mechanisms and regulation of the mitotic inheritance of the Golgi complex. Front Cell Dev Biol 2015; 3: 79

    Article  PubMed  PubMed Central  Google Scholar 

  133. Mao L, Li N, Guo Y, Xu X, Gao L, Xu Y, Zhou L, Liu W. AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J Cell Sci 2013; 126(Pt 6): 1498–1505

    CAS  PubMed  Google Scholar 

  134. Yadav S, Puthenveedu MA, Linstedt AD. Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell 2012; 23(1): 153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kano F, Tanaka AR, Yamauchi S, Kondo H, Murata M. Cdc2 kinase-dependent disassembly of endoplasmic reticulum (ER) exit sites inhibits ER-to-Golgi vesicular transport during mitosis. Mol Biol Cell 2004; 15(9): 4289–4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Prescott AR, Farmaki T, Thomson C, James J, Paccaud JP, Tang BL, Hong W, Quinn M, Ponnambalam S, Lucocq J. Evidence for prebudding arrest of ER export in animal cell mitosis and its role in generating Golgi partitioning intermediates. Traffic 2001; 2(5): 321–335

    Article  CAS  PubMed  Google Scholar 

  137. Stroud WJ, Jiang S, Jack G, Storrie B. Persistence of Golgi matrix distribution exhibits the same dependence on Sar1p activity as a Golgi glycosyltransferase. Traffic 2003; 4(9): 631–641

    Article  CAS  PubMed  Google Scholar 

  138. Ward TH, Polishchuk RS, Caplan S, Hirschberg K, Lippincott-Schwartz J. Maintenance of Golgi structure and function depends on the integrity of ER export. J Cell Biol 2001; 155(4): 557–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Miles S, McManus H, Forsten KE, Storrie B. Evidence that the entire Golgi apparatus cycles in interphase HeLa cells: sensitivity of Golgi matrix proteins to an ER exit block. J Cell Biol 2001; 155(4): 543–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Corda D, Barretta ML, Cervigni RI, Colanzi A. Golgi complex fragmentation in G2/M transition: an organelle-based cell-cycle checkpoint. IUBMB Life 2012; 64(8): 661–670

    Article  CAS  PubMed  Google Scholar 

  141. Persico A, Cervigni RI, Barretta ML, Corda D, Colanzi A. Golgi partitioning controls mitotic entry through Aurora-A kinase. Mol Biol Cell 2010; 21(21): 3708–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Altan-Bonnet N, Sougrat R, Lippincott-Schwartz J. Molecular basis for Golgi maintenance and biogenesis. Curr Opin Cell Biol 2004; 16(4): 364–372

    Article  CAS  PubMed  Google Scholar 

  143. Altan-Bonnet N, Sougrat R, Liu W, Snapp EL, Ward T, Lippincott-Schwartz J. Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities. Mol Biol Cell 2006; 17(2): 990–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Magliozzi R, Carrero ZI, Low TY, Yuniati L, Valdes-Quezada C, Kruiswijk F, van Wijk K, Heck AJR, Jackson CL, Guardavaccaro D. Inheritance of the Golgi apparatus and cytokinesis are controlled by degradation of GBF1. Cell Rep 2018; 23(11): 3381–3391.e4

    Article  CAS  PubMed  Google Scholar 

  145. Miserey-Lenkei S, Couëdel-Courteille A, Del Nery E, Bardin S, Piel M, Racine V, Sibarita JB, Perez F, Bornens M, Goud B. A role for the Rab6A′ GTPase in the inactivation of the Mad2-spindle checkpoint. EMBO J 2006; 25(2): 278–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 2014; 15(10): 634–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 2020; 21(4): 204–224

    Article  CAS  PubMed  Google Scholar 

  148. Kashatus DF, Lim KH, Brady DC, Pershing NLK, Cox AD, Counter CM. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 2011; 13(9): 1108–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kanfer G, Kornmann B. Dynamics of the mitochondrial network during mitosis. Biochem Soc Trans 2016; 44(2): 510–516

    Article  CAS  PubMed  Google Scholar 

  150. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007; 120(5): 838–848

    Article  CAS  PubMed  Google Scholar 

  151. Parone PA, Da Cruz S, Tondera D, Mattenberger Y, James DI, Maechler P, Barja F, Martinou JC. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One 2008; 3(9): e3257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Nagashima S, Tábara LC, Tilokani L, Paupe V, Anand H, Pogson JH, Zunino R, McBride HM, Prudent J. Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 2020; 367(6484): 1366–1371

    Article  CAS  PubMed  Google Scholar 

  153. Horbay R, Bilyy R. Mitochondrial dynamics during cell cycling. Apoptosis 2016; 21(12): 1327–1335

    Article  CAS  PubMed  Google Scholar 

  154. Kanfer G, Courthéoux T, Peterka M, Meier S, Soste M, Melnik A, Reis K, Aspenström P, Peter M, Picotti P, Kornmann B. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Commun 2015; 6(1): 8015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Walch L, Pellier E, Leng W, Lakisic G, Gautreau A, Contremoulins V, Verbavatz JM, Jackson CL. GBF1 and Arf1 interact with Miro and regulate mitochondrial positioning within cells. Sci Rep 2018; 8(1): 17121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Frederick RL, Shaw JM. Moving mitochondria: establishing distribution of an essential organelle. Traffic 2007; 8(12): 1668–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA. Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Pololike kinase activities in mitotic cells. Sci Signal 2011; 4(179): rs5

    Article  CAS  PubMed  Google Scholar 

  158. Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 2008; 105(31): 10762–10767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Malik R, Lenobel R, Santamaria A, Ries A, Nigg EA, Körner R. Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res 2009; 8(10): 4553–4563

    Article  CAS  PubMed  Google Scholar 

  160. D’Avino PP, Giansanti MG, Petronczki M. Cytokinesis in animal cells. Cold Spring Harb Perspect Biol 2015; 7(4): a015834

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kechad A, Jananji S, Ruella Y, Hickson GRX. Anillin acts as a bifunctional linker coordinating midbody ring biogenesis during cytokinesis. Curr Biol 2012; 22(3): 197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Steigemann P, Gerlich DW. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol 2009; 19(11): 606–616

    Article  CAS  PubMed  Google Scholar 

  163. Hu CK, Coughlin M, Mitchison TJ. Midbody assembly and its regulation during cytokinesis. Mol Biol Cell 2012; 23(6): 1024–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wadsworth P. Cytokinesis: Rho marks the spot. Curr Biol 2005; 15: R871–R874

    Article  CAS  PubMed  Google Scholar 

  165. Piekny A, Werner M, Glotzer M. Cytokinesis: welcome to the Rho zone. Trends Cell Biol 2005; 15(12): 651–658

    Article  CAS  PubMed  Google Scholar 

  166. Jordan SN, Canman JC. Rho GTPases in animal cell cytokinesis: an occupation by the one percent. Cytoskeleton (Hoboken) 2012; 69(11): 919–930

    Article  CAS  Google Scholar 

  167. Narumiya S, Yasuda S. Rho GTPases in animal cell mitosis. Curr Opin Cell Biol 2006; 18(2): 199–205

    Article  CAS  PubMed  Google Scholar 

  168. Fraschini R. Cytokinesis in eukaryotic cells: the furrow complexity at a glance. Cells 2020; 9(2): 271

    Article  CAS  PubMed Central  Google Scholar 

  169. Bement WM, Benink HAHA, von Dassow G. A microtubule-dependent zone of active RhoA during cleavage plane specification. J Cell Biol 2005; 170(1): 91–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yüce O, Piekny A, Glotzer M. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol 2005; 170(4): 571–582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Yoshizaki H, Ohba Y, Kurokawa K, Itoh RE, Nakamura T, Mochizuki N, Nagashima K, Matsuda M. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 2003; 162(2): 223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kotýnková K, Su KC, West SC, Petronczki M. Plasma membrane association but not midzone recruitment of RhoGEF ECT2 is essential for cytokinesis. Cell Rep 2016; 17(10): 2672–2686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Schroeder TE. The contractile ring. I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B. Z Zellforsch Mikrosk Anat 1970; 109(4): 431–449

    Article  CAS  PubMed  Google Scholar 

  174. Schroeder TE. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci USA 1973; 70(6): 1688–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Otomo T, Otomo C, Tomchick DR, Machius M, Rosen MK. Structural basis of Rho GTPase-mediated activation of the formin mDia1. Mol Cell 2005; 18(3): 273–281

    Article  CAS  PubMed  Google Scholar 

  176. Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghofer A. Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 2005; 435(7041): 513–518

    Article  CAS  PubMed  Google Scholar 

  177. Castrillon DH, Wasserman SA. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 1994; 120(12): 3367–3377

    Article  CAS  PubMed  Google Scholar 

  178. Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 2002; 4(3): 260–269

    Article  CAS  PubMed  Google Scholar 

  179. Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D. An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 2002; 4(8): 626–631

    Article  CAS  PubMed  Google Scholar 

  180. Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Narumiya S. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 1997; 16(11): 3044–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, Matsumura F, Inagaki M, Kaibuchi K. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rhokinase in vivo. J Cell Biol 1999; 147(5): 1023–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kosako H, Yoshida T, Matsumura F, Ishizaki T, Narumiya S, Inagaki M. Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 2000; 19(52): 6059–6064

    Article  CAS  PubMed  Google Scholar 

  183. Yokoyama T, Goto H, Izawa I, Mizutani H, Inagaki M. Aurora-B and Rho-kinase/ROCK, the two cleavage furrow kinases, independently regulate the progression of cytokinesis: possible existence of a novel cleavage furrow kinase phosphorylates ezrin/radixin/moesin (ERM). Genes Cells 2005; 10(2): 127–137

    Article  CAS  PubMed  Google Scholar 

  184. Khasnis M, Nakatomi A, Gumpper K, Eto M. Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1. Biochemistry 2014; 53(16): 2701–2709

    Article  CAS  PubMed  Google Scholar 

  185. Gai M, Camera P, Dema A, Bianchi F, Berto G, Scarpa E, Germena G, Di Cunto F. Citron kinase controls abscission through RhoA and anillin. Mol Biol Cell 2011; 22(20): 3768–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. D’Avino PP. Citron kinase—renaissance of a neglected mitotic kinase. J Cell Sci 2017; 130(10): 1701–1708

    PubMed  Google Scholar 

  187. Canman JC, Lewellyn L, Laband K, Smerdon SJ, Desai A, Bowerman B, Oegema K. Inhibition of Rac by the GAP activity of centralspindlin is essential for cytokinesis. Science 2008; 322(5907): 1543–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Boucrot E, Kirchhausen T. Endosomal recycling controls plasma membrane area during mitosis. Proc Natl Acad Sci USA 2007; 104(19): 7939–7944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ai E, Skop AR. Endosomal recycling regulation during cytokinesis. Commun Integr Biol 2009; 2(5): 444–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Schiel JA, Prekeris R. Membrane dynamics during cytokinesis. Curr Opin Cell Biol 2013; 25(1): 92–98

    Article  CAS  PubMed  Google Scholar 

  191. Sechi S, Frappaolo A, Fraschini R, Capalbo L, Gottardo M, Belloni G, Glover DM, Wainman A, Giansanti MG. Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in Drosophila melanogaster. Open Biol 2017; 7(1): 160257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Cao J, Albertson R, Riggs B, Field CM, Sullivan W. Nuf, a Rab11 effector, maintains cytokinetic furrow integrity by promoting local actin polymerization. J Cell Biol 2008; 182(2): 301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Rodrigues FF, Shao W, Harris TJC. The Arf GAP Asap promotes Arf1 function at the Golgi for cleavage furrow biosynthesis in Drosophila. Mol Biol Cell 2016; 27(20): 3143–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Frémont S, Echard A. Membrane traffic in the late steps of cytokinesis. Curr Biol 2018; 28(8): R458–R470

    Article  PubMed  CAS  Google Scholar 

  195. Albertson R, Riggs B, Sullivan W. Membrane traffic: a driving force in cytokinesis. Trends Cell Biol 2005; 15(2): 92–101

    Article  CAS  PubMed  Google Scholar 

  196. Montagnac G, Echard A, Chavrier P. Endocytic traffic in animal cell cytokinesis. Curr Opin Cell Biol 2008; 20(4): 454–461

    Article  CAS  PubMed  Google Scholar 

  197. Schiel JA, Childs C, Prekeris R. Endocytic transport and cytokinesis: from regulation of the cytoskeleton to midbody inheritance. Trends Cell Biol 2013; 23(7): 319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Schiel JA, Simon GC, Zaharris C, Weisz J, Castle D, Wu CC, Prekeris R. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat Cell Biol 2012; 14(10): 1068–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Minoshima Y, Kawashima T, Hirose K, Tonozuka Y, Kawajiri A, Bao YC, Deng X, Tatsuka M, Narumiya S, May WS Jr, Nosaka T, Semba K, Inoue T, Satoh T, Inagaki M, Kitamura T. Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell 2003; 4(4): 549–560

    Article  CAS  PubMed  Google Scholar 

  200. Yu X, Prekeris R, Gould GW. Role of endosomal Rab GTPases in cytokinesis. Eur J Cell Biol 2007; 86(1): 25–35

    Article  CAS  PubMed  Google Scholar 

  201. Hanai A, Ohgi M, Yagi C, Ueda T, Shin HW, Nakayama K. Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis. J Biochem 2016; 159(2): 201–208

    Article  CAS  PubMed  Google Scholar 

  202. Dambournet D, Machicoane M, Chesneau L, Sachse M, Rocancourt M, El Marjou A, Formstecher E, Salomon R, Goud B, Echard A. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat Cell Biol 2011; 13(8): 981–988

    Article  CAS  PubMed  Google Scholar 

  203. Frémont S, Hammich H, Bai J, Wioland H, Klinkert K, Rocancourt M, Kikuti C, Stroebel D, Romet-Lemonne G, Pylypenko O, Houdusse A, Echard A. Oxidation of F-actin controls the terminal steps of cytokinesis. Nat Commun 2017; 8(1): 14528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Montagnac G, Sibarita JB, Loubéry S, Daviet L, Romao M, Raposo G, Chavrier P. ARF6 interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr Biol 2009; 19(3): 184–195

    Article  CAS  PubMed  Google Scholar 

  205. Cascone I, Selimoglu R, Ozdemir C, Del Nery E, Yeaman C, White M, Camonis J. Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J 2008; 27(18): 2375–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Chen XW, Inoue M, Hsu SC, Saltiel AR. RalA-exocyst-dependent recycling endosome trafficking is required for the completion of cytokinesis. J Biol Chem 2006; 281(50): 38609–38616

    Article  CAS  PubMed  Google Scholar 

  207. Neumann B, Walter T, Hériché JKK, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, Cetin C, Sieckmann F, Pau G, Kabbe R, Wünsche A, Satagopam V, Schmitz MH, Chapuis C, Gerlich DW, Schneider R, Eils R, Huber W, Peters JM, Hyman AA, Durbin R, Pepperkok R, Ellenberg J. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 2010; 464(7289): 721–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Yang PL, Hsu TH, Wang CW, Chen RH. Lipid droplets maintain lipid homeostasis during anaphase for efficient cell separation in budding yeast. Mol Biol Cell 2016; 27(15): 2368–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Brill JA, Wong R, Wilde A. Phosphoinositide function in cytokinesis. Curr Biol 2011; 21(22): R930–R934

    Article  CAS  PubMed  Google Scholar 

  210. Ben El Kadhi K, Roubinet C, Solinet S, Emery G, Carréno S. The inositol 5-phosphatase dOCRL controls PI(4,5)P2 homeostasis and is necessary for cytokinesis. Curr Biol 2011; 21(12): 1074–1079

    Article  CAS  PubMed  Google Scholar 

  211. Field SJ, Madson N, Kerr ML, Galbraith KAA, Kennedy CE, Tahiliani M, Wilkins A, Cantley LC. PtdIns(4,5)P2 functions at the cleavage furrow during cytokinesis. Curr Biol 2005; 15(15): 1407–1412

    Article  CAS  PubMed  Google Scholar 

  212. Zoppino FCM, Militello RD, Slavin I, Álvarez C, Colombo MI. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010; 11(9): 1246–1261

    Article  CAS  PubMed  Google Scholar 

  213. Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ 2014; 21(3): 348–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chua CEL, Gan BQ, Tang BL. Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation. Cell Mol Life Sci 2011; 68(20): 3349–3358

    Article  CAS  PubMed  Google Scholar 

  215. Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 2011; 91(1): 119–149

    Article  CAS  PubMed  Google Scholar 

  216. Ganley IG, Wong PM, Gammoh N, Jiang X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 2011; 42(6): 731–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 2012; 37(2): 223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Munafó DB, Colombo MI. Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 2002; 3(7): 472–482

    Article  PubMed  Google Scholar 

  219. Sakurai A, Maruyama F, Funao J, Nozawa T, Aikawa C, Okahashi N, Shintani S, Hamada S, Ooshima T, Nakagawa I. Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J Biol Chem 2010; 285(29): 22666–22675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Bento CF, Puri C, Moreau K, Rubinsztein DC. The role of membrane-trafficking small GTPases in the regulation of autophagy. J Cell Sci 2013; 126(5): 1059–1069

    Article  CAS  PubMed  Google Scholar 

  221. Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, Camonis JH, Yeaman C, Levine B, White MA. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 2011; 144(2): 253–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Nakashima N, Noguchi E, Nishimoto T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 1999; 152(3): 853–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem 2001; 276(10): 7246–7257

    Article  CAS  PubMed  Google Scholar 

  224. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141(2): 290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320(5882): 1496–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Odle RI, Walker SA, Oxley D, Kidger AM, Balmanno K, Gilley R, Okkenhaug H, Florey O, Ktistakis NT, Cook SJ. An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis. Mol Cell 2020; 77(2): 228–240.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Thiam AR, Farese RV Jr, Walther TC. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 2013; 14(12): 775–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 2012; 81(1): 687–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Martin S, Parton RG. Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 2006; 7(5): 373–378

    Article  CAS  PubMed  Google Scholar 

  230. Hashemi HF, Goodman JM. The life cycle of lipid droplets. Curr Opin Cell Biol 2015; 33: 119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Cruz ALS, Carrossini N, Teixeira LK, Ribeiro-Pinto LF, Bozza PT, Viola JPB. Cell cycle progression regulates biogenesis and cellular localization of lipid droplets. Mol Cell Biol 2019; 39(9): e00374–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Tan R, Wang W, Wang S, Wang Z, Sun L, He W, Fan R, Zhou Y, Xu X, Hong W, Wang T. Small GTPase Rab40c associates with lipid droplets and modulates the biogenesis of lipid droplets. PLoS One 2013; 8(4): e63213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 2005; 118(12): 2601–2611

    Article  CAS  PubMed  Google Scholar 

  234. Schroeder B, Schulze RJ, Weller SG, Sletten AC, Casey CA, McNiven MA. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 2015; 61(6): 1896–1907

    Article  CAS  PubMed  Google Scholar 

  235. Gabaldón T. Peroxisome diversity and evolution. Philos Trans R Soc Lond B Biol Sci 2010; 365(1541): 765–773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Knoblach B, Rachubinski RA. How peroxisomes partition between cells. A story of yeast, mammals and filamentous fungi. Curr Opin Cell Biol 2016; 41: 73–80

    Article  CAS  PubMed  Google Scholar 

  237. Nguyen T, Bjorkman J, Paton BC, Crane DI. Failure of microtubule-mediated peroxisome division and trafficking in disorders with reduced peroxisome abundance. J Cell Sci 2006; 119(4): 636–645

    Article  CAS  PubMed  Google Scholar 

  238. Asare A, Levorse J, Fuchs E. Coupling organelle inheritance with mitosis to balance growth and differentiation. Science 2017; 355(6342): eaah4701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9(9): 690–701

    Article  CAS  PubMed  Google Scholar 

  240. Castro IG, Richards DM, Metz J, Costello JL, Passmore JB, Schrader TA, Gouveia A, Ribeiro D, Schrader M. A role for mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes. Traffic 2018; 19(3): 229–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Schollenberger L, Gronemeyer T, Huber CM, Lay D, Wiese S, Meyer HE, Warscheid B, Saffrich R, Peränen J, Gorgas K, Just WW. RhoA regulates peroxisome association to microtubules and the actin cytoskeleton. PLoS One 2010; 5(11): e13886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Just WW, Peränen J. Small GTPases in peroxisome dynamics. Biochim Biophys Acta 2016; 1863(5): 1006–1013

    Article  CAS  PubMed  Google Scholar 

  243. Gronemeyer T, Wiese S, Grinhagens S, Schollenberger L, Satyagraha A, Huber LA, Meyer HE, Warscheid B, Just WW. Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study. FEBS Lett 2013; 587(4): 328–338

    Article  CAS  PubMed  Google Scholar 

  244. Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2(2): 107–117

    Article  CAS  PubMed  Google Scholar 

  245. Cussac D, Leblanc P, L’Heritier A, Bertoglio J, Lang P, Kordon C, Enjalbert A, Saltarelli D. Rho proteins are localized with different membrane compartments involved in vesicular trafficking in anterior pituitary cells. Mol Cell Endocrinol 1996; 119(2): 195–206

    Article  CAS  PubMed  Google Scholar 

  246. Croisé P, Estay-Ahumada C, Gasman S, Ory S. Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking. Small GTPases 2014; 5(2): e29469

    Article  PubMed  PubMed Central  Google Scholar 

  247. Wittinghofer A. Ras Superfamily Small G Proteins: Biology and Mechanisms 1: general features, signaling. Springer Vienna, 2014

    Book  Google Scholar 

  248. Zhou B, Cox AD. Posttranslational modifications of small G proteins. In: Wittinghofer A. Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer Vienna, 2014: 99–131

    Google Scholar 

  249. Barr F, Lambright DG. Rab GEFs and GAPs. Curr Opin Cell Biol 2010; 22(4): 461–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Eathiraj S, Pan X, Ritacco C, Lambright DG. Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature 2005; 436(7049): 415–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJG. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015; 521(7551): 173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Christopher M. Lavender and Dr. Yuchen Zhang for critically reading our manuscript, and members of the Liu Q laboratory for scientific advice. Space constraints limited the number of citations. We apologize to those whose work we are unable to cite. This research work is supported by the National Key R&D Program of China (Nos. 2019YFA0110300 and 2017YFA0505600-04), the National Natural Science Foundation of China (Nos. 81820108024 and 81630005), the Innovative Research Team in University of Ministry of Education of China (No. IRT-17R15), and the Natural Science Foundation of Guangdong (Nos. 2016A030311038 and 2017A030313608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Liu.

Additional information

Compliance with ethics guidelines

Zijian Zhang, Wei Zhang, and Quentin Liu declare no competing interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, W. & Liu, Q. Fine-tuning cell organelle dynamics during mitosis by small GTPases. Front. Med. 16, 339–357 (2022). https://doi.org/10.1007/s11684-022-0926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-022-0926-1

Keywords

Navigation