Skip to main content
Log in

Loss of monocarboxylate transporter 1 aggravates white matter injury after experimental subarachnoid hemorrhage in rats

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Monocarboxylic acid transporter 1 (MCT1) maintains axonal function by transferring lactic acid from oligodendrocytes to axons. Subarachnoid hemorrhage (SAH) induces white matter injury, but the involvement of MCT1 is unclear. In this study, the SAH model of adult male Sprague-Dawley rats was used to explore the role of MCT1 in white matter injury after SAH. At 48 h after SAH, oligodendrocyte MCT1 was significantly reduced, and the exogenous overexpression of MCT1 significantly improved white matter integrity and long-term cognitive function. Motor training after SAH significantly increased the number of ITPR2+SOX10+ oligodendrocytes and upregulated the level of MCT1, which was positively correlated with the behavioral ability of rats. In addition, miR-29b and miR-124 levels were significantly increased in SAH rats compared with non-SAH rats. Further intervention experiments showed that miR-29b and miR-124 could negatively regulate the level of MCT1. This study confirmed that the loss of MCT1 may be one of the mechanisms of white matter damage after SAH and may be caused by the negative regulation of miR-29b and miR-124. MCT1 may be involved in the neurological improvement of rehabilitation training after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hviid CVB, Lauridsen SV, Gyldenholm T, Sunde N, Parkner T, Hvas AM. Plasma neurofilament light chain is associated with poor functional outcome and mortality rate after spontaneous subarachnoid hemorrhage. Transl Stroke Res 2020; 11(4): 671–677

    Article  CAS  PubMed  Google Scholar 

  2. Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, Wang L, Jiang Y, Li Y, Wang Y, Chen Z, Wu S, Zhang Y, Wang D, Wang Y, Feigin VL; the NESS-China Investigators. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults. Circulation 2017; 135(8): 759–771

    Article  PubMed  Google Scholar 

  3. Balbi M, Vega MJ, Lourbopoulos A, Terpolilli NA, Plesnila N. Long-term impairment of neurovascular coupling following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2020; 40(6): 1193–1202

    Article  CAS  PubMed  Google Scholar 

  4. Nishikawa H, Nakatsuka Y, Shiba M, Kawakita F, Fujimoto M, Suzuki H; pSEED group. Increased plasma galectin-3 preceding the development of delayed cerebral infarction and eventual poor outcome in non-severe aneurysmal subarachnoid hemorrhage. Transl Stroke Res 2018; 9(2): 110–119

    Article  CAS  PubMed  Google Scholar 

  5. Pang J, Peng J, Yang P, Kuai L, Chen L, Zhang JH, Jiang Y. White matter injury in early brain injury after subarachnoid hemorrhage. Cell Transplant 2019; 28(1): 26–35

    Article  PubMed  Google Scholar 

  6. Reijmer YD, van den Heerik MS, Heinen R, Leemans A, Hendrikse J, de Vis JB, van der Kleij LA, Lucci C, Hendriks ME, van Zandvoort MJE, Huenges Wajer IMC, Visser-Meily JMA, Rinkel GJE, Biessels GJ, Vergouwen MDI. Microstructural white matter abnormalities and cognitive impairment after aneurysmal subarachnoid hemorrhage. Stroke 2018; 49(9): 2040–2045

    Article  PubMed  Google Scholar 

  7. Etherton MR, Wu O, Giese AK, Lauer A, Boulouis G, Mills B, Cloonan L, Donahue KL, Copen W, Schaefer P, Rost NS. White matter integrity and early outcomes after acute ischemic stroke. Transl Stroke Res 2019; 10(6): 630–638

    Article  PubMed  Google Scholar 

  8. Peng J, Pang J, Huang L, Enkhjargal B, Zhang T, Mo J, Wu P, Xu W, Zuo Y, Peng J, Zuo G, Chen L, Tang J, Zhang JH, Jiang Y. LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biol 2019; 21: 101121

    Article  PubMed  PubMed Central  Google Scholar 

  9. Egashira Y, Hua Y, Keep RF, Iwama T, Xi G. Lipocalin 2 and blood-brain barrier disruption in white matter after experimental subarachnoid hemorrhage. Acta Neurochir Suppl (Wien) 2016; 121: 131–134

    Article  Google Scholar 

  10. Micu I, Plemel JR, Lachance C, Proft J, Jansen AJ, Cummins K, van Minnen J, Stys PK. The molecular physiology of the axo-myelinic synapse. Exp Neurol 2016; 276: 41–50

    Article  CAS  PubMed  Google Scholar 

  11. Micu I, Plemel JR, Caprariello AV, Nave KA, Stys PK. Axomyelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nat Rev Neurosci 2018; 19(1): 49–58

    Article  CAS  PubMed  Google Scholar 

  12. Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 2005; 94(1): 1–14

    Article  CAS  PubMed  Google Scholar 

  13. Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D. Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci 2011; 31(2): 538–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 2013; 61(1): 91–103

    Article  PubMed  Google Scholar 

  15. Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 2011; 31(15): 3182–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu SY, Jiang XL, Liu Q, Xu J, Huang J, Gan SW, Lu WT, Zhuo F, Yang M, Sun SQ. Role of rno-miR-124-3p in regulating MCT1 expression in rat brain after permanent focal cerebral ischemia. Genes Dis 2019; 6(4): 398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ziu M, Fletcher L, Rana S, Jimenez DF, Digicaylioglu M. Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS One 2011; 6(2): e14724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao H, Xu T, Chen L, Xu Y. Increased brain-specific miR-9 and miR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One 2016; 11(9): e0163645

    Article  PubMed  PubMed Central  Google Scholar 

  19. Massoto TB, Santos ACR, Ramalho BS, Almeida FM, Martinez AMB, Marques SA. Mesenchymal stem cells and treadmill training enhance function and promote tissue preservation after spinal cord injury. Brain Res 2020; 1726: 146494

    Article  CAS  PubMed  Google Scholar 

  20. Sun T, Ye C, Zhang Z, Wu J, Huang H. Cotransplantation of olfactory ensheathing cells and Schwann cells combined with treadmill training promotes functional recovery in rats with contused spinal cords. Cell Transplant 2013; 22(Suppl 1): S27–S38

    Article  PubMed  Google Scholar 

  21. Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcão A, Xiao L, Li H, Häring M, Hochgerner H, Romanov RA, Gyllborg D, Muñoz Manchado A, La Manno G, Lönnerberg P, Floriddia EM, Rezayee F, Ernfors P, Arenas E, Hjerling-Leffler J, Harkany T, Richardson WD, Linnarsson S, Castelo-Branco G. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 2016; 352(6291): 1326–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hamano K, Takeya T, Iwasaki N, Nakayama J, Ohto T, Okada Y. A quantitative study of the progress of myelination in the rat central nervous system, using the immunohistochemical method for proteolipid protein. Brain Res Dev Brain Res 1998; 108(1–2): 287–293

    Article  CAS  PubMed  Google Scholar 

  23. Dou Y, Shen H, Feng D, Li H, Tian X, Zhang J, Wang Z, Chen G. Tumor necrosis factor receptor-associated factor 6 participates in early brain injury after subarachnoid hemorrhage in rats through inhibiting autophagy and promoting oxidative stress. J Neurochem 2017; 142(3): 478–492

    Article  CAS  PubMed  Google Scholar 

  24. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 2008; 167(2): 327–334

    Article  PubMed  Google Scholar 

  25. Shen H, Chen Z, Wang Y, Gao A, Li H, Cui Y, Zhang L, Xu X, Wang Z, Chen G. Role of neurexin-1β and neuroligin-1 in cognitive dysfunction after subarachnoid hemorrhage in rats. Stroke 2015; 46(9): 2607–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang P, Wang T, Zhang D, Zhang Z, Yuan S, Zhang J, Cao J, Li H, Li X, Shen H, Chen G. Exploration of MST1-mediated secondary brain injury induced by intracerebral hemorrhage in rats via Hippo signaling pathway. Transl Stroke Res 2019; 10(6): 729–743

    Article  CAS  PubMed  Google Scholar 

  27. Zhao H, Li G, Zhang S, Li F, Wang R, Tao Z, Ma Q, Han Z, Yan F, Fan J, Li L, Ji X, Luo Y. Inhibition of histone deacetylase 3 by miR-494 alleviates neuronal loss and improves neurological recovery in experimental stroke. J Cereb Blood Flow Metab 2019; 39(12): 2392–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mao L, Yang T, Li X, Lei X, Sun Y, Zhao Y, Zhang W, Gao Y, Sun B, Zhang F. Protective effects of sulforaphane in experimental vascular cognitive impairment: contribution of the Nrf2 pathway. J Cereb Blood Flow Metab 2019; 39(2): 352–366

    Article  CAS  PubMed  Google Scholar 

  29. Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, Freret T. The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 2009; 4(10): 1560–1564

    Article  CAS  PubMed  Google Scholar 

  30. Deng ZF, Zheng HL, Chen JG, Luo Y, Xu JF, Zhao G, Lu JJ, Li HH, Gao SQ, Zhang DZ, Zhu LQ, Zhang YH, Wang F. miR-214-3p targets β-catenin to regulate depressive-like behaviors induced by chronic social defeat stress in mice. Cereb Cortex 2019; 29(4): 1509–1519

    Article  PubMed  Google Scholar 

  31. Zhao J, Mu H, Liu L, Jiang X, Wu D, Shi Y, Leak RK, Ji X. Transient selective brain cooling confers neurovascular and functional protection from acute to chronic stages of ischemia/reperfusion brain injury. J Cereb Blood Flow Metab 2019; 39(7): 1215–1231

    Article  PubMed  Google Scholar 

  32. Dai X, Chen J, Xu F, Zhao J, Cai W, Sun Z, Hitchens TK, Foley LM, Leak RK, Chen J, Hu X. TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. J Cereb Blood Flow Metab 2020; 40(3): 639–655

    Article  CAS  PubMed  Google Scholar 

  33. Shi H, Hu X, Leak RK, Shi Y, An C, Suenaga J, Chen J, Gao Y. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp Neurol 2015; 272: 17–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012; 487(7408): 443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schröter A, Gullo M, Weinmann O, Kobayashi K, Helmchen F, Ommer B, Schwab ME. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science 2014; 344(6189): 1250–1255

    Article  CAS  PubMed  Google Scholar 

  36. Brody BA, Kinney HC, Kloman AS, Gilles FH. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 1987; 46(3): 283–301

    Article  CAS  PubMed  Google Scholar 

  37. Kinney HC, Brody BA, Kloman AS, Gilles FH. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 1988; 47(3): 217–234

    Article  CAS  PubMed  Google Scholar 

  38. Olkowski BF, Devine MA, Slotnick LE, Veznedaroglu E, Liebman KM, Arcaro ML, Binning MJ. Safety and feasibility of an early mobilization program for patients with aneurysmal subarachnoid hemorrhage. Phys Ther 2013; 93(2): 208–215

    Article  PubMed  Google Scholar 

  39. Lengacher S, Nehiri-Sitayeb T, Steiner N, Carneiro L, Favrod C, Preitner F, Thorens B, Stehle JC, Dix L, Pralong F, Magistretti PJ, Pellerin L. Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice. PLoS One 2013; 8(12): e82505

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chatel B, Bendahan D, Hourdé C, Pellerin L, Lengacher S, Magistretti P, Le Fur Y, Vilmen C, Bernard M, Messonnier LA. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice. FASEB J 2017; 31(6): 2562–2575

    Article  CAS  PubMed  Google Scholar 

  41. Zhang M, Ma Z, Qin H, Yao Z. Monocarboxylate transporter 1 in the medial prefrontal cortex developmentally expresses in oligodendrocytes and associates with neuronal amounts. Mol Neurobiol 2017; 54(3): 2315–2326

    Article  CAS  PubMed  Google Scholar 

  42. Wu S, Lin Y, Xu D, Chen J, Shu M, Zhou Y, Zhu W, Su X, Zhou Y, Qiu P, Yan G. miR-135a functions as a selective killer of malignant glioma. Oncogene 2012; 31(34): 3866–3874

    Article  CAS  PubMed  Google Scholar 

  43. Li F, Zhou MW, Liu N, Yang YY, Xing HY, Lu Y, Liu XX. MicroRNA-219 inhibits proliferation and induces differentiation of oligodendrocyte precursor cells after contusion spinal cord injury in rats. Neural Plast 2019; 2019: 9610687

    Article  PubMed  PubMed Central  Google Scholar 

  44. Toyota Y, Wei J, Xi G, Keep RF, Hua Y. White matter T2 hyperintensities and blood-brain barrier disruption in the hyperacute stage of subarachnoid hemorrhage in male mice: the role of lipocalin-2. CNS Neurosci Ther 2019; 25(10): 1207–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li J, Chan MC, Yu Y, Bei Y, Chen P, Zhou Q, Cheng L, Chen L, Ziegler O, Rowe GC, Das S, Xiao J. miR-29b contributes to multiple types of muscle atrophy. Nat Commun 2017; 8: 15201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bao WD, Zhou XT, Zhou LT, Wang F, Yin X, Lu Y, Zhu LQ, Liu D. Targeting miR-124/ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model. Aging Cell 2020; 19(11): e13235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gupta A, Pulliam L. Exosomes as mediators of neuroinflammation. J Neuroinflammation 2014; 11: 68

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Nos. 2018YFC1312600 and 2018YFC1312601), National Natural Science Foundation of China (Nos. 81830036, 81771254, 81771255, 81873741, and 82071307), China Postdoctoral Science Foundation (No. 2019M651954), Natural Science Foundation of Jiangsu Province (Nos. BK20180204 and 20211552), Suzhou Key Medical Centre (No. Szzx201501), Gusu Health Personnel Training Project (No. GSWS2019030), and Grants from Suzhou Government (No. SYS2019045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Wang or Gang Chen.

Additional information

Compliance with ethics guidelines

Xin Wu, Zongqi Wang, Haiying Li, Xueshun Xie, Jiang Wu, Haitao Shen, Xiang Li, Zhong Wang, and Gang Chen declare that they have no conflict of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Z., Li, H. et al. Loss of monocarboxylate transporter 1 aggravates white matter injury after experimental subarachnoid hemorrhage in rats. Front. Med. 15, 887–902 (2021). https://doi.org/10.1007/s11684-021-0879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-021-0879-9

Keywords

Navigation