Skip to main content
Log in

p-Cresyl sulfate promotes the formation of atherosclerotic lesions and induces plaque instability by targeting vascular smooth muscle cells

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Coronary atherosclerosis is a major complication of chronic kidney disease. This condition contributes to the increased mortality in dialysis patients. p-Cresyl sulfate (PCS) is a prototype of protein-bound uremic toxins that cannot be efficiently removed through routine dialysis procedures. In the present study, ApoE–/– mice that underwent 5/6 nephrectomy were randomly divided into two groups, namely, vehicle-treated group (n = 20) and PCS-treated group (n = 20). Mice were sacrificed for en face and immunohistological analyses after 8 or 24 weeks of high-fat diet. Rat aortic vascular smooth muscle cells (VSMCs) were treated with phosphate buffer solution or 500 μmol/L PCS for in vitro evaluation. PCS-treated mice were observed to suffer increased atherosclerotic lesions after eight weeks of PCS administration. Moreover, 24 weeks of PCS administration also markedly increased the vulnerability index of aortic plaques. PCS was also observed to facilitate the migration and proliferation of VSMCs during the progression of the disease. Moreover, PCS disturbed the balance between matrix metalloproteinases and tissue inhibitor of metalloproteinases within the plaques. Thus, PCS played a vital role in promoting atherogenesis and disturbing the stability of formed plaques probably by targeting VSMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, Kasiske B, Kutner N, Liu J, St Peter W, Guo H, Gustafson S, Heubner B, Lamb K, Li S, Li S, Peng Y, Qiu Y, Roberts T, Skeans M, Snyder J, Solid C, Thompson B, Wang C, Weinhandl E, Zaun D, Arko C, Chen SC, Daniels F, Ebben J, Frazier E, Hanzlik C, Johnson R, Sheets D, Wang X, Forrest B, Constantini E, Everson S, Eggers P, Agodoa L. US Renal Data System 2011 Annual Data Report. Am J Kidney Dis 2012; 59(1 Suppl 1): A7, e1–420

    Article  Google Scholar 

  2. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, McCullough PA, Kasiske BL, Kelepouris E, Klag MJ, Parfrey P, Pfeffer M, Raij L, Spinosa DJ, Wilson PW; American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003; 108(17): 2154–2169

    Article  PubMed  Google Scholar 

  3. Formanowicz D, Wanic-Kossowska M, Pawliczak E, Radom M, Formanowicz P. Usefulness of serum interleukin-18 in predicting cardiovascular mortality in patients with chronic kidney disease — systems and clinical approach. Sci Rep 2015; 5: 18332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sirich TL, Meyer TW, Gondouin B, Brunet P, Niwa T. Proteinbound molecules: a large family with a bad character. Semin Nephrol 2014; 34(2): 106–117

    Article  CAS  PubMed  Google Scholar 

  5. Ito S, Yoshida M. Protein-bound uremic toxins: new culprits of cardiovascular events in chronic kidney disease patients. Toxins (Basel) 2014; 6(2): 665–678

    Article  Google Scholar 

  6. Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol 2014; 25(9): 1897–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Itoh Y, Ezawa A, Kikuchi K, Tsuruta Y, Niwa T. Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Anal Bioanal Chem 2012; 403(7): 1841–1850

    Article  CAS  PubMed  Google Scholar 

  8. Miyamoto Y, Watanabe H, Noguchi T, Kotani S, Nakajima M, Kadowaki D, Otagiri M, Maruyama T. Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney. Nephrol Dial Transplant 2011; 26(8): 2498–2502

    Article  CAS  PubMed  Google Scholar 

  9. Wu IW, Hsu KH, Hsu HJ, Lee CC, Sun CY, Tsai CJ, Wu MS. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients — a prospective cohort study. Nephrol Dial Transplant 2012; 27(3): 1169–1175

    Article  CAS  PubMed  Google Scholar 

  10. Liabeuf S, Barreto DV, Barreto FC, Meert N, Glorieux G, Schepers E, Temmar M, Choukroun G, Vanholder R, Massy ZA; European Uraemic Toxin Work Group (EUTox). Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol Dial Transplant 2010; 25(4): 1183–1191

    Article  CAS  PubMed  Google Scholar 

  11. Curcio A, Torella D, Indolfi C. Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ J 2011; 75(6): 1287–1296

    Article  CAS  PubMed  Google Scholar 

  12. Newby AC, Libby P, van der Wal AC. Plaque instability—the real challenge for atherosclerosis research in the next decade? Cardiovasc Res 1999; 41(2): 321–322

    Article  CAS  PubMed  Google Scholar 

  13. Muteliefu G, Enomoto A, Jiang P, Takahashi M, Niwa T. Indoxyl sulphate induces oxidative stress and the expression of osteoblastspecific proteins in vascular smooth muscle cells. Nephrol Dial Transplant 2009; 24(7): 2051–2058

    Article  CAS  PubMed  Google Scholar 

  14. Ito S, Osaka M, Higuchi Y, Nishijima F, Ishii H, Yoshida M. Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of E-selectin. J Biol Chem 2010; 285(50): 38869–38875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feigenbaum J, Neuberg CA. Simplified method for the preparation of aromatic sulfuric acid esters. J Am Chem Soc 1941; 63: 3529–3530

    Article  CAS  Google Scholar 

  16. Shimizu RT, Blank RS, Jervis R, Lawrenz-Smith SC, Owens GK. The smooth muscle α-actin gene promoter is differentially regulated in smooth muscle versus non-smooth muscle cells. J Biol Chem 1995; 270(13): 7631–7643

    Article  CAS  PubMed  Google Scholar 

  17. Ni J, Zhang W, Zhu Z, Zhu J, Du R, Jing Y, Lu L, Zhang R. In vivo kinetics of the uremic toxin p-cresyl sulfate in mice with variable renal function. Ther Apher Dial 2014; 18(6): 637–642

    Article  CAS  PubMed  Google Scholar 

  18. Han H, Zhu J, Zhu Z, Ni J, Du R, Dai Y, Chen Y, Wu Z, Lu L, Zhang R. p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyo-cytes. J Am Heart Assoc 2015; 4(6): e001852

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cho KY, Miyoshi H, Kuroda S, Yasuda H, Kamiyama K, Nakagawara J, Takigami M, Kondo T, Atsumi T. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis 2013; 22(7): 910–918

    Article  PubMed  Google Scholar 

  20. Ross R. Atherosclerosis — an inflammatory disease. N Engl J Med 1999; 340(2): 115–126

    Article  CAS  PubMed  Google Scholar 

  21. Johnson JL. Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis. Cardiovasc Res 2014; 103(4): 452–460

    Article  CAS  PubMed  Google Scholar 

  22. Gittenberger-de Groot AC, DeRuiter MC, Bergwerff M, Poelmann RE. Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vasc Biol 1999; 19(7): 1589–1594

    Article  CAS  PubMed  Google Scholar 

  23. Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones 2007; 39(2): 86–93

    PubMed  Google Scholar 

  24. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92(8): 827–839

    Article  CAS  PubMed  Google Scholar 

  25. Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 2006; 69(3): 614–624

    Article  CAS  PubMed  Google Scholar 

  26. Langer HF, Haubner R, Pichler BJ, Gawaz M. Radionuclide imaging: a molecular key to the atherosclerotic plaque. J Am Coll Cardiol 2008; 52(1): 1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shiomi M, Ito T, Hirouchi Y, Enomoto M. Fibromuscular cap composition is important for the stability of established atherosclerotic plaques in mature WHHL rabbits treated with statins. Atherosclerosis 2001; 157(1): 75–84

    Article  CAS  PubMed  Google Scholar 

  28. Yang JM, Dong M, Meng X, Zhao YX, Yang XY, Liu XL, Hao PP, Li JJ, Wang XP, Zhang K, Gao F, Zhao XQ, Zhang MX, Zhang Y, Zhang C. Angiotensin-(1-7) dose-dependently inhibits atherosclerotic lesion formation and enhances plaque stability by targeting vascular cells. Arterioscler Thromb Vasc Biol 2013; 33(8): 1978–1985

    Article  CAS  PubMed  Google Scholar 

  29. Schwarz U, Buzello M, Ritz E, Stein G, Raabe G, Wiest G, Mall G, Amann K. Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure. Nephrol Dial Transplant 2000; 15(2): 218–223

    Article  CAS  PubMed  Google Scholar 

  30. Rössig L, Dimmeler S, Zeiher AM. Apoptosis in the vascular wall and atherosclerosis. Basic Res Cardiol 2001; 96(1): 11–22

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiyan Zhang or Wei Jin.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Chen, Y., Zhu, Z. et al. p-Cresyl sulfate promotes the formation of atherosclerotic lesions and induces plaque instability by targeting vascular smooth muscle cells. Front. Med. 10, 320–329 (2016). https://doi.org/10.1007/s11684-016-0463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-016-0463-x

Keywords

Navigation