Skip to main content
Log in

p53 functional activation is independent of its genotype in five esophageal squamous cell carcinoma cell lines

  • Research Article
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

p53 mutations have been found in many esophageal squamous cell carcinoma (ESCC) clinical specimens and cell lines. We reasoned that functional inactivation of wild-type p53 or the functional activation of mutant-type p53 might exist in these specimens and cell lines. In this study, we identified the correlation between p53 functional activation and its genotype in five different ESCC cell lines. To examine the potential p53 activation in a certain ESCC cell line, DNA damage methods including X-ray exposure and cisplatin treatment were employed to treat cells. Further, the expression of p53 protein and four transcripts of well-known p53 target genes were investigated using Western blot and reverse transcriptionpolymerase chain reaction (RT-PCR) after cell exposure to DNA damage. The results showed that in KYSE 30 cell line with mutant p53 and KYSE 150 with wild-type p53, p53 could be activated by DNA damages. However, p53 could not be activated following the DNA damages in YES 2 with wild-type p53, KYSE 70 with mutant p53, and EC9706 with unknown p53 genotype. All our data indicated that p53 function in certain cells is not closely correlated with its genotype. To judge p53 function in a particular cell line, it is important to examine the p53 functional activation, but not to simply rely on the p53 genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkin D M, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin, 2005, 55(2): 74–108

    Article  PubMed  Google Scholar 

  2. Ke L. Mortality and incidence trends from esophagus cancer in selected geographic areas of China circa 1970–90. Int J Cancer, 2002, 102(3): 271–274

    Article  CAS  PubMed  Google Scholar 

  3. Lerut T, Coosemans W, De Leyn P, Van Raemdonck D, Deneffe G, Decker G. Treatment of esophageal carcinoma. Chest, 1999, 116(6 Suppl): 463S–465S

    Article  CAS  PubMed  Google Scholar 

  4. Zhan Q, Carrier F, Fornace A J Jr. Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol Cell Biol, 1993, 13(7): 4242–4250

    CAS  PubMed  Google Scholar 

  5. Hainaut P, Hernandez T, Robinson A, Rodriguez-Tome P, Flores T, Hollstein M, Harris C C, Montesano R. IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res, 1998, 26(1): 205–213

    Article  CAS  PubMed  Google Scholar 

  6. May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene, 1999, 18(53): 7621–7636

    Article  CAS  PubMed  Google Scholar 

  7. Zhan Q, Fan S, Bae I, Guillouf C, Liebermann D A, O’Connor P M, Fornace A J Jr. Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene, 1994, 9(12): 3743–3751

    CAS  PubMed  Google Scholar 

  8. Greenblatt MS, Bennett WP, Hollstein M, Harris C C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res, 1994, 54(18): 4855–4878

    CAS  PubMed  Google Scholar 

  9. Tanaka H, Shibagaki I, Shimada Y, Wagata T, Imamura M, Ishizaki K. Characterization of p53 gene mutations in esophageal squamous cell carcinoma cell lines: increased frequency and different spectrum of mutations from primary tumors. Int J Cancer, 1996, 65(3): 372–376

    Article  CAS  PubMed  Google Scholar 

  10. Ko L J, Prives C. p53: puzzle and paradigm. Genes Dev, 1996, 10(9): 1054–1072

    Article  CAS  PubMed  Google Scholar 

  11. Merchant A K, Loney T L, Maybaum J. Expression of wild-type p53 stimulates an increase in both Bax and Bcl-xL protein content in HT29 cells. Oncogene, 1996, 13(12): 2631–2637

    CAS  PubMed  Google Scholar 

  12. Miyashita T, Krajewski S, Krajewska M, Wang H G, Lin H K, Liebermann D A, Hoffman B, Reed J C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994, 9(6): 1799–1805

    CAS  PubMed  Google Scholar 

  13. Pietenpol J A, Tokino T, Thiagalingam S, el-Deiry W S, Kinzler K W, Vogelstein B. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci U S A, 1994, 91(6): 1998–2002

    Article  CAS  PubMed  Google Scholar 

  14. Moll U M, LaQuaglia M, Bénard J, Riou G. Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci U S A, 1995, 92(10): 4407–4411

    Article  CAS  PubMed  Google Scholar 

  15. Moll U M, Ostermeyer A G, Haladay R, Winkfield B, Frazier M, Zambetti G. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol, 1996, 16(3): 1126–1137

    CAS  PubMed  Google Scholar 

  16. Fan W, Jin S, Tong T, Zhao H, Fan F, Antinore M J, Rajasekaran B, Wu M, Zhan Q. BRCA1 regulates GADD45 through its interactions with the OCT-1 and CAAT motifs. J Biol Chem, 2002, 277(10): 8061–8067

    Article  CAS  PubMed  Google Scholar 

  17. Barnas C, Martel-Planche G, Furukawa Y, Hollstein M, Montesano R, Hainaut P. Inactivation of the p53 protein in cell lines derived from human esophageal cancers. Int J Cancer, 1997, 71(1): 79–87

    Article  CAS  PubMed  Google Scholar 

  18. Fujii T, Kato S, Yamana H, Tanaka Y, Fujita H, Shirouzu K, Morimatsu M. Expression of G1 cell cycle markers and the effect of adenovirus-mediated overexpression of p21Waf-1 in squamous cell carcinoma of the esophagus. Int J Oncol, 2001, 18(1): 157–163

    CAS  PubMed  Google Scholar 

  19. Rigberg D A, Centeno J, Kim F S, Ke B, Swenson K, Maggard M, McFadden D W. Irradiation-induced up-regulation of Fas in esophageal squamous cell carcinoma is not accompanied by Fas ligand-mediated apoptosis. J Surg Oncol, 1999, 71(2): 91–96

    Article  CAS  PubMed  Google Scholar 

  20. el-Deiry W S. Regulation of p53 downstream genes. Semin Cancer Biol, 1998, 8(5): 345–357

    Article  CAS  PubMed  Google Scholar 

  21. Leng R P, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant J M, Lozano G, Hakem R, Benchimol S. Pirh2, a p53-induced ubiquitinprotein ligase, promotes p53 degradation. Cell, 2003, 112(6): 779–791

    Article  CAS  PubMed  Google Scholar 

  22. Zhan Q. Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res, 2005, 569(1–2): 133–143

    CAS  PubMed  Google Scholar 

  23. Rigberg D A, Kim F S, Blinman T A, Cole M A, Lane J S, So J, McFadden D W. p21 expression is increased by irradiation in esophageal squamous cell carcinoma. J Surg Res, 1998, 76(2): 137–142

    Article  CAS  PubMed  Google Scholar 

  24. el-Deiry W S, Kern S E, Pietenpol J A, Kinzler K W, Vogelstein B. Definition of a consensus binding site for p53. Nat Genet, 1992, 1(1): 45–49

    Article  CAS  PubMed  Google Scholar 

  25. Hollstein M, Sidransky D, Vogelstein B, Harris C C. p53 mutations in human cancers. Science, 1991, 253(5015): 49–53

    Article  CAS  PubMed  Google Scholar 

  26. Liang S H, Clarke M F. Regulation of p53 localization. Eur J Biochem, 2001, 268(10): 2779–2783

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qimin Zhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, J., Wu, K., Wu, M. et al. p53 functional activation is independent of its genotype in five esophageal squamous cell carcinoma cell lines. Front. Med. China 4, 412–418 (2010). https://doi.org/10.1007/s11684-010-0260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-010-0260-x

Keywords

Navigation