Skip to main content
Log in

Lentivector-mediated RNAi efficiently downregulates expression of murine cdk4 gene in vitro

  • Research Article
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

In order to explore the role of cyclin-dependent kinase 4 (cdk4) in neurodegenerative diseases, lentiviral-delivered RNA interference (RNAi) was used to silence the expression of the murine cdk4 gene in vitro. Three cdk4-shRNAs of mouse and a negative sequence were designed. After synthesis and annealing, double strand oligonucleotides were cloned into a linearized pSIH1-H1-copGFP shRNA vector. It was confirmed by polymerase chain reaction (PCR) and sequencing that three pairs of cdk4-shRNAs and a negative shRNA were correctly inserted into the pSIH1-H1-copGFP vector. The above recombinants were transfected by lipofectamine into BV-2 cells. The gene silencing efficacy rates of the 3 targets were compared by Western blotting. The cdk4-siRNA2 was the most effective in silencing cdk4. The optimized pSIH1-cdk4-siRNA2 and pSIH-negative-siRNA were cotransfected into 293T cells with the lentiviral packaging plasmids respectively. The culture supernatant was harvested and condensed at the 24th and 48th h after transfection. Interference efficiency of the lentivirus expressing cdk4-siRNA was determined by reverse transcriptase-PCR (RT-PCR) and Western blotting in BV-2 cells. Lentivector-mediated RNAi could efficiently down-regulate the expression of the murine cdk4 gene in vitro, which provides a potential tool for studying and treating cdk4-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof P R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev, 2000, 33(1): 95–130

    Article  PubMed  Google Scholar 

  2. Giovanni A, Wirtz-Brugger F, Keramaris E, Slack R, Park D S. Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F x DP, in B-amyloid-induced neuronal death. J Biol Chem, 1999, 274(27): 19011–19016

    Article  PubMed  CAS  Google Scholar 

  3. Vincent I, Pae C I, Hallows J L. The cell cycle and human neurodegenerative disease. Prog Cell Cycle Res, 2003, 5: 31–41

    PubMed  Google Scholar 

  4. Smith P D, O’Hare M J, Park D S. Emerging pathogenic role for cyclin dependent kinases in neurodegeneration. Cell Cycle, 2004, 3(3): 289–291

    PubMed  CAS  Google Scholar 

  5. Jorda E G, Verdaguer E, Canudas AM, Jiménez A, Bruna A, Caelles C, Bravo R, Escubedo E, Pubill D, Camarasa J, Pallàs M, Camins A. Neuroprotective action of flavopiridol, a cyclin-dependent kinase inhibitor, in colchicine-induced apoptosis. Neuropharmacology, 2003, 45(5): 672–683

    Article  PubMed  CAS  Google Scholar 

  6. Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836): 494–498

    Article  PubMed  CAS  Google Scholar 

  7. Wilda M, Fuchs U, Wössmann W, Borkhardt A. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene, 2002, 21(37): 5716–5724

    Article  PubMed  CAS  Google Scholar 

  8. Jacque J M, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature, 2002, 418(6896): 435–438

    Article  PubMed  CAS  Google Scholar 

  9. Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression replication by RNA interference. Hepatology, 2003, 37(4): 764–770

    Article  PubMed  CAS  Google Scholar 

  10. Cann A J. RNA viruses. A practical approach. Oxford: Oxford University Press, 2000

    Google Scholar 

  11. Albertin G, Ruggero M, Guidolin D, Nussdorfer G G. Gene silencing of human RAMP2 mediated by short-interfering RNA. Int J Mol Med, 2006, 18(4): 531–535

    PubMed  CAS  Google Scholar 

  12. Abbas-Terki T, Blanco-Bose W, Déglon N, Pralong W, Aebischer P. Lentiviral-mediated RNA interference. Hum Gene Ther, 2002, 13(18): 2197–2201

    Article  PubMed  CAS  Google Scholar 

  13. Hommel J D, Sears RM, Georgescu D, Simmons D L, DiLeone R J. Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med, 2003, 9(12): 1539–1544

    Article  PubMed  CAS  Google Scholar 

  14. Stewart S A, Dykxhoorn D M, Palliser D, Mizuno H, Yu E Y, An D S, Sabatini D M, Chen I S, Hahn W C, Sharp P A, Weinberg R A, Novina C D. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA, 2003, 9(4): 493–501

    Article  PubMed  CAS  Google Scholar 

  15. Ong W Y, Kumar U, Switzer R C, Sidhu A, Suresh G, Hu C Y, Patel S C. Neurodegeneration in Niemann-Pick type C disease mice. Exp Brain Res, 2001, 141(2): 218–231

    Article  PubMed  CAS  Google Scholar 

  16. Khatib Z A, Matsushime H, Valentine M, Shapiro D N, Sherr C J, Look A T. Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res, 1993, 53(22): 5535–5541

    PubMed  CAS  Google Scholar 

  17. Bu B T, Wang X Z, Zhang Y H. Activation of cdk4/cyclin D1 pathway participates in the neuronal degeneration of murine niemann-pick disease type C. Xi Bao Sheng Wu Xue Za Zhi, 2005, 27(4): 435–440 (in Chinese)

    CAS  Google Scholar 

  18. McCaffrey A P, Nakai H, Pandey K, Huang Z, Salazar F H, Xu H, Wieland S F, Marion P L, Kay M A. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol, 2003, 21(6): 639–644

    Article  PubMed  CAS  Google Scholar 

  19. Smith-Arica J R, Bartlett J S. Gene therapy: recombinant adeno-associated virus vectors. Curr Cardiol Rep, 2001, 3(1): 43–49

    Article  PubMed  CAS  Google Scholar 

  20. Rubinson D A, Dillon C P, Kwiatkowski A V, Sievers C, Yang L, Kopinja J, Rooney D L, Zhang M, Ihrig M M, McManus M T, Gertler F B, Scott M L, Van Parijs L. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet, 2003, 33(3): 401–406

    Article  PubMed  CAS  Google Scholar 

  21. Sinn P L, Sauter S L, McCray P B Jr. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors - design, biosafety, and production. Gene Ther, 2005, 12(14): 1089–1098

    Article  PubMed  CAS  Google Scholar 

  22. Dull T, Zufferey R, Kelly M, Mandel R J, Nguyen M, Trono D, Naldini L. A third-generation lentivirus vector with a conditional packaging system. J Virol, 1998, 72(11): 8463–8471

    PubMed  CAS  Google Scholar 

  23. Wiznerowicz M, Trono D. Conditional suppression of cellular genes: lentivirus vector mediated drug-inducible RNA interference. J Virol, 2003, 77(16): 8957–8961

    Article  PubMed  CAS  Google Scholar 

  24. Pfeifer A, Eigenbrod S, Al-Khadra S, Hofmann A, Mitteregger G, Moser M, Bertsch U, Kretzschmar H. Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J Clin Invest, 2006, 116(12): 3204–3210

    Article  PubMed  CAS  Google Scholar 

  25. Yang Z, Cloud A, Hughes D, Johnson L F. Stable inhibition of human thymidylate synthase expression following retroviral introduction of an siRNA gene. Cancer Gene Ther, 2006, 13(1): 107–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, F., Wang, X., Xue, Z. et al. Lentivector-mediated RNAi efficiently downregulates expression of murine cdk4 gene in vitro . Front. Med. China 3, 287–291 (2009). https://doi.org/10.1007/s11684-009-0050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-009-0050-5

Keywords

Navigation