Skip to main content

Advertisement

Log in

Associations between Cortical Thickness and Metamemory in Alzheimer’s Disease

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Metacognitive deficits affect Alzheimer’s disease (AD) patient safety and increase caregiver burden. The brain areas that support metacognition are not well understood. 112 participants from the Imaging and Genetic Biomarkers for AD (ImaGene) study underwent comprehensive cognitive testing and brain magnetic resonance imaging. A performance-prediction paradigm was used to evaluate metacognitive abilities for California Verbal Learning Test–II learning (CVLT-II 1–5) and delayed recall (CVLT-II DR); Visual Reproduction-I immediate recall (VR-I Copy) and Visual Reproduction-II delayed recall (VR-II DR); Rey-Osterrieth Complex Figure Copy (Rey-O Copy) and delayed recall (Rey-O DR). Vertex-wise multivariable regression of cortical thickness was performed using metacognitive scores as predictors while controlling for age, sex, education, and intracranial volume. Subjects who overestimated CVLT-II DR in prediction showed cortical atrophy, most pronounced in the bilateral temporal and left greater than right (L > R) frontal cortices. Overestimation of CVLT-II 1–5 prediction and DR performance in postdiction showed L > R associations with medial, inferior and lateral temporal and left posterior cingulate cortical atrophy. Overconfident prediction of VR-I Copy performance was associated with right greater than left medial, inferior and lateral temporal, lateral parietal, anterior and posterior cingulate and lateral frontal cortical atrophy. Underestimation of Rey-O Copy performance in prediction was associated with atrophy localizing to the temporal and cingulate areas, and in postdiction, with diffuse cortical atrophy. Impaired metacognition was associated to cortical atrophy. Our results indicate that poor insight into one’s cognitive abilities is a pervasive neurodegenerative feature associated with AD across the cognitive spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

MRI data is available through LONI Image Data Archive (IDA) (https://ida.loni.usc.edu).

Code availability

No software was used for data collection. We used publicly available packages and functions described in methods for data analysis.

References

  • 2020 Alzheimer’s disease facts and figures. (2020). Alzheimer’s & Dementia, 16(3), 391–460.

    Article  Google Scholar 

  • Amanzio, M., Torta, D. M., Sacco, K., Cauda, F., D’Agata, F., Duca, S., Leotta, D., Palermo, S., & Geminiani, G. C. (2011). Unawareness of deficits in Alzheimer’s disease: Role of the cingulate cortex. Brain, 134(Pt 4), 1061–1076.

    Article  PubMed  Google Scholar 

  • Amanzio, M., Vase, L., Leotta, D., Miceli, R., Palermo, S., & Geminiani, G. (2013). Impaired awareness of deficits in Alzheimer’s disease: The role of everyday executive dysfunction. Journal of the International Neuropsychological Society, 19(1), 63–72.

    Article  PubMed  Google Scholar 

  • Cella, M., Swan, S., Medin, E., Reeder, C., & Wykes, T. (2014). Metacognitive awareness of cognitive problems in schizophrenia: Exploring the role of symptoms and self-esteem. Psychological Medicine, 44(3), 469–476.

    Article  CAS  PubMed  Google Scholar 

  • Chandler, M. J., Parks, A. C., Marsiske, M., Rotblatt, L. J., & Smith, G. E. (2016). Everyday Impact of Cognitive Interventions in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Neuropsychology Review, 26(3), 225–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, D. G., McLaughlin, P. M., Woo, E., Hwang, K., Hurtz, S., Ramirez, L., Eastman, J., Dukes, R.-M., Kapur, P., DeRamus, T. P., & Apostolova, L. G. (2016). Novel verbal fluency scores and structural brain imaging for prediction of cognitive outcome in mild cognitive impairment. Alzheimer’s & Dementia (amsterdam, Netherlands), 2, 113–122.

    Article  Google Scholar 

  • Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., & Barillot, C. (2008). An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transactions on Medical Imaging, 27(4), 425–441.

    Article  PubMed  PubMed Central  Google Scholar 

  • The handbook of aging and cognition. Third edition. ed, ed. F.I.M. Craik and T.A. Salthouse. 2008, New York: Psychology Press.

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194.

    Article  CAS  PubMed  Google Scholar 

  • David, A. S., Bedford, N., Wiffen, B., & Gilleen, J. (2012). Failures of metacognition and lack of insight in neuropsychiatric disorders. Philosophical Transactions of the Royal Society of London. Series b, Biological Sciences, 367(1594), 1379–1390.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeFeis, B., Chapman, S., Zhu, C., Azar, M., Sunderaraman, P., Ornstein, K., Gu, Y., & Cosentino, S. (2019). Reduced Awareness of Memory Deficit is Associated With Increased Medicare Home Health Care Use in Dementia. Alzheimer Disease and Associated Disorders, 33(1), 62–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devolder, P. A., Brigham, M. C., & Pressley, M. (1990). Memory performance awareness in younger and older adults. Psychology and Aging, 5(2), 291–303.

    Article  CAS  PubMed  Google Scholar 

  • Ecklund-Johnson, E., & Torres, I. (2005). Unawareness of deficits in Alzheimer’s disease and other dementias: Operational definitions and empirical findings. Neuropsychology Review, 15(3), 147–166.

    Article  PubMed  Google Scholar 

  • Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781.

    Article  PubMed  Google Scholar 

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050–11055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical Surface-Based Analysis: II: Inflation, Flattening, and a Surface-Based Coordinate System. NeuroImage, 9(2), 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8(4), 272–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American Psychologist, 34(10), 906–911.

    Article  Google Scholar 

  • Fleming, S.M. and C.D. Frith, The Cognitive Neuroscience of Metacognition. 2014, Berlin, Heidelberg, GERMANY: Springer Berlin / Heidelberg.

  • Gaser, C. and P. Coupé. Impact of Non-local Means filtering on Brain Tissue Segmentation. in Organization for Human Brain Mapping 2010 Annual Meeting. 2010.

  • Gibson, A.K. and V.E. Richardson, Living Alone With Cognitive Impairment: Findings From the National Health and Aging Trends Study. American Journal of Alzheimer's Disease & Other Dementias®, 2016. 32(1): p. 56–62.

  • Hagler, D. J., Saygin, A. P., & Sereno, M. I. (2006). Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. NeuroImage, 33(4), 1093–1103.

    Article  PubMed  Google Scholar 

  • Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., Busa, E., Pacheco, J., Albert, M., Killiany, R., Maguire, P., Rosas, D., Makris, N., Dale, A., Dickerson, B., & Fischl, B. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32(1), 180–194.

    Article  PubMed  Google Scholar 

  • Hart, J. T. (1965). Memory and the feeling-of-knowing experience. Journal of Educational Psychology, 56(4), 208–216.

    Article  CAS  PubMed  Google Scholar 

  • Hertzog, C. and D.F. Hultsch, Metacognition in adulthood and old age., in The handbook of aging and cognition, 2nd ed. 2000, Lawrence Erlbaum Associates Publishers: Mahwah, NJ, US. p. 417–466.

  • Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Feldman, H. H., Frisoni, G. B., Hampel, H., Jagust, W. J., Johnson, K. A., Knopman, D. S., Petersen, R. C., Scheltens, P., Sperling, R. A., & Dubois, B. (2016). A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 87(5), 539–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., … Silverberg, N. (2018). NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535–562.

    Article  Google Scholar 

  • Clifford R. Jack, Jr. (2013) Update on hypothetical model of Alzheimer’s disease biomarkers. Lancet Neurology, 12(2): 207.

  • Koren, D., Seidman, L. J., Goldsmith, M., & Harvey, P. D. (2006). Real-World Cognitive–and Metacognitive-Dysfunction in Schizophrenia: A New Approach for Measuring (and Remediating) More “Right Stuff.” Schizophrenia Bulletin, 32(2), 310–326.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai, E.R., Metacognition Literature Review. http://www.pearsonassessments.com/, 2011.

  • Martinez, M. E. (2006). What is Metacognition? Phi Delta Kappan, 87(9), 696–699.

    Article  Google Scholar 

  • Mazzoni, G. and T.O. Nelson (1998) Metacognition and cognitive neuropsychology : monitoring and control processes. Mahwah, N.J: L. Erlbaum.

  • McGlynn, S. M., & Kaszniak, A. W. (1991). When Metacognition Fails: Impaired Awareness of Deficit in Alzheimer’s Disease. Journal of Cognitive Neuroscience, 3(2), 183–187.

    Article  CAS  PubMed  Google Scholar 

  • Mondragón, J. D., Maurits, N. M., & De Deyn, P. P. (2019). Functional Neural Correlates of Anosognosia in Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review. Neuropsychology Review, 29(2), 139–165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris, J. C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2414.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Neira, C., A. Tedde, E. Coulthard, N.J. Thai, and C. Pennington (2019) Neural correlates of altered insight in frontotemporal dementia: a systematic review. NeuroImage: Clinical, 24: p. 102066.

  • Nelson, P. T., Alafuzoff, I., Bigio, E. H., Bouras, C., Braak, H., Cairns, N. J., Castellani, R. J., Crain, B. J., Davies, P., Del Tredici, K., Duyckaerts, C., Frosch, M. P., Haroutunian, V., Hof, P. R., Hulette, C. M., Hyman, B. T., Iwatsubo, T., Jellinger, K. A., Jicha, G. A., … Beach, T. G. (2012). Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. Journal of Neuropathology and Experimental Neurology, 71(5), 362–381.

    Article  PubMed  Google Scholar 

  • Palmer, E. C., David, A. S., & Fleming, S. M. (2014). Effects of age on metacognitive efficiency. Consciousness and Cognition, 28, 151–160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pannu, J. K., & Kaszniak, A. W. (2005). Metamemory experiments in neurological populations: A review. Neuropsychology Review, 15(3), 105–130.

    Article  PubMed  Google Scholar 

  • Park, S., Ryu, S.-H., Yoo, Y., Yang, J.-J., Kwon, H., Youn, J.-H., Lee, J.-M., Cho, S.-J., & Lee, J.-Y. (2018). Neural predictors of cognitive improvement by multi-strategic memory training based on metamemory in older adults with subjective memory complaints. Scientific Reports, 8(1), 1095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perrotin, A., Belleville, S., & Isingrini, M. (2007). Metamemory monitoring in mild cognitive impairment: Evidence of a less accurate episodic feeling-of-knowing. Neuropsychologia, 45(12), 2811–2826.

    Article  PubMed  Google Scholar 

  • Ramirez, L. M., Goukasian, N., Porat, S., Hwang, K. S., Eastman, J. A., Hurtz, S., Wang, B., Vang, N., Sears, R., Klein, E., Coppola, G., & Apostolova, L. G. (2016). Common variants in ABCA7 and MS4A6A are associated with cortical and hippocampal atrophy. Neurobiology of Aging, 39, 82–89.

    Article  CAS  PubMed  Google Scholar 

  • Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61(4), 1402–1418.

    Article  PubMed  Google Scholar 

  • Rickenbach, E. H., Agrigoroaei, S., & Lachman, M. E. (2015). Awareness of Memory Ability and Change: (In)Accuracy of Memory Self-Assessments in Relation to Performance. J Popul Ageing, 8(1–2), 71–99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosen, H. J., Alcantar, O., Zakrzewski, J., Shimamura, A. P., Neuhaus, J., & Miller, B. L. (2014). Metacognition in the behavioral variant of frontotemporal dementia and Alzheimer’s disease. Neuropsychology, 28(3), 436–447.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothlind, J., Dukarm, P., & Kraybill, M. (2017). Assessment of Self-Awareness of Cognitive Function: Correlations of Self-Ratings with Actual Performance Ranks for Tests of Processing Speed, Memory and Executive Function in Non-Clinical Samples. Archives of Clinical Neuropsychology, 32(3), 316–327.

    PubMed  Google Scholar 

  • Ruijter, N.S., A.M.G. Schoonbrood, B. Twillert, and E.I. Hoff, Anosognosia in dementia: A review of current assessment instruments. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 2020. 12(1).

  • Schmitter-Edgecombe, M., & Woo, E. (2004). Memory self-awareness and memory self-monitoring following severe closed-head injury. Brain Injury, 18(10), 997–1016.

    Article  PubMed  Google Scholar 

  • Seltzer, B., Vasterling, J. J., Yoder, J., & Thompson, K. A. (1997). Awareness of Deficit in Alzheimer’s Disease: Relation to Caregiver Burden. The Gerontologist, 37(1), 20–24.

    Article  CAS  PubMed  Google Scholar 

  • Sevush, S. (1999). Relationship between denial of memory deficit and dementia severity in Alzheimer disease. Neuropsychiatry, Neuropsychology, & Behavioral Neurology, 12(2), 88–94.

    CAS  Google Scholar 

  • Shimamura, A.P. (2000) Toward a cognitive neuroscience of metacognition. Conscious Cogn, 9(2 Pt 1): p. 313–23; discussion 324–6.

  • Sitek, E. J., Soltan, W., Wieczorek, D., Robowski, P., & Slawek, J. (2011). Self-awareness of memory function in Parkinson’s disease in relation to mood and symptom severity. Aging & Mental Health, 15(2), 150–156.

    Article  Google Scholar 

  • Souchay, C. (2007). Metamemory in Alzheimer’s disease. Cortex, 43(7), 987–1003.

    Article  PubMed  Google Scholar 

  • Souchay, C., Moulin, C. J. A., Clarys, D., Taconnat, L., & Isingrini, M. (2007). Diminished episodic memory awareness in older adults: Evidence from feeling-of-knowing and recollection. Consciousness and Cognition, 16(4), 769–784.

    Article  PubMed  Google Scholar 

  • Sunderaraman, P., & Cosentino, S. (2017). Integrating the Constructs of Anosognosia and Metacognition: A Review of Recent Findings in Dementia. Current Neurology and Neuroscience Reports, 17(3), 27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas, A. K., Lee, M., & Balota, D. A. (2013). Metacognitive monitoring and dementia: How intrinsic and extrinsic cues influence judgments of learning in people with early-stage Alzheimer’s disease. Neuropsychology, 27(4), 452–463.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trouillet, R., Gely-Nargeot, M. C., & Derouesne, C. (2003). Unawareness of deficits in Alzheimer’s disease: A multidimentional approach. Psychologie & Neuropsychiatrie Du Vieillissement, 1(2), 99–110.

    Google Scholar 

  • Wilhalme, H., Goukasian, N., De Leon, F., He, A., Hwang, K. S., Woo, E., Elashoff, D., Zhou, Y., Ringman, J. M., & Apostolova, L. G. (2017). A comparison of theoretical and statistically derived indices for predicting cognitive decline. Alzheimer’s & Dementia (amsterdam, Netherlands), 6, 171–181.

    Article  Google Scholar 

  • Wilson, R.S., J. Sytsma, L.L. Barnes, and P.A. Boyle (2016) Anosognosia in Dementia. Current Neurology and Neuroscience Reports, 16(9).

  • Woo, E., Schmitter-Edgecombe, M., & Fancher, J. B. (2008). Memory prediction accuracy in younger and older adults: A cross-sectional and longitudinal analysis. Neuropsychology, Development, and Cognition. Section b, Aging, Neuropsychology and Cognition, 15(1), 68–94.

    Article  PubMed  Google Scholar 

  • Worsley, K.J., J.E. Taylor, F. Carbonell, M.K. Chung, E. Duerden, B. Bernhardt, O. Lyttelton, M. Boucher, and A.C. Evans, SurfStat: A Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory. NeuroImage, 2009. Supplement 1(47): p. S102.

Download references

Funding

The analyses reported in this manuscript were funded by the NIA R01 AG040770, NIA K02 AG048240, NIA P50 AG16570, NIA P30 AG010133, NIA U01 AG02490, NLM R01 LM012535, NIA R03 AG054936, the Alzheimer’s Association, the Easton Consortium for Alzheimer’s Drug Discovery and Biomarker Development, and the Indiana Clinical and Translational Science Institute.

Author information

Authors and Affiliations

Authors

Contributions

Ms. Tugce Duran performed analysis and interpretation of the data and was responsible for drafting and revision of the manuscript. Dr. Diana Otero, Dr. Shannon Risacher, Dr. Kwangsik Nho, Dr. Eddie Stage, Mrs. Meredith Phillips and Ms. Apoorva Sanjay were involved in the analysis of the data contained in this study and revision of the manuscript. Mr. John West was involved in the data processing and analysis. Dr. Kristy Hwang and Ms. Naira Goukasian were involved in subject recruitment, collection and analysis of the study data, and revision of the manuscript. Dr. Ellen Woo was involved in the design, conceptualization, data collection and execution of the cognitive component of study, interpretation of the data, and revision of the manuscript. Dr. Liana Apostolova, the primary investigator of the study, was involved with the design, conceptualization, data collection and execution of the clinical and neuroimaging components of the study, interpretation of the data, and revision of the manuscript.

Corresponding author

Correspondence to Tugce Duran.

Ethics declarations

Conflicts of Interest

Tugce Duran, MS, Ellen Woo, PhD, Diana Otero, PhD, Shannon L. Risacher, PhD, Eddie Stage, PhD, Apoorva B. Sanjay, BS, Kwangsik Nho, PhD, John D. West, MS, Meredith L. Phillips, MS, Naira Goukasian, BS, and Kristy S. Hwang, MD have no relevant conflicts of interest to report. Liana G. Apostolova, MD, MS has served on Advisory Boards for Eli Lilly, Biogen and Two Labs, and has received research support from GE Healthcare, AVID Radiopharmaceuticals Inc., Life Molecular Imaging and Roche Diagnostics. Dr. Apostolova serves on a DSMB for IQVIA.

The UCLA Institutional Review Boards approved the study. All ImaGene participants or their legally authorized representatives provided informed consent for data collection and publication according to the Declaration of Helsinki, U.S. federal regulations, local state laws and regulations, and policies of the UCLA IRB.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4953 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, T., Woo, E., Otero, D. et al. Associations between Cortical Thickness and Metamemory in Alzheimer’s Disease. Brain Imaging and Behavior 16, 1495–1503 (2022). https://doi.org/10.1007/s11682-021-00627-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-021-00627-0

Keywords

Navigation