Skip to main content

Advertisement

Log in

Participant factors that contribute to magnetic resonance imaging motion artifacts in children with mild traumatic brain injury or orthopedic injury

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Motion can compromise image quality and confound results, especially in pediatric research. This study evaluated qualitative and quantitative approaches to motion artifacts detection and correction, and whether motion artifacts relate to injury history, age, or sex in children with mild traumatic brain injury or orthopedic injury relative to typically developing children. The concordance between qualitative and quantitative motion ratings was also examined. Children aged 8–16 years with mild traumatic brain injury (n = 141) or orthopedic injury (n = 73) were recruited from the emergency department and completed an MRI scan roughly 2 weeks post-injury. Typically developing children (n = 41) completed a single MRI scan. T1- and diffusion-weighted images were visually inspected and rated for motion artifacts by trained examiners. Quantitative estimates of motion artifacts were derived from FreeSurfer and FSL. Age (younger > older) and sex (boys > girls) were significantly associated with motion artifacts on both T1- and diffusion-weighted images. Children with mild traumatic brain or orthopedic injury had significantly more motion-corrupted diffusion-weighted volumes than typically developing children, but mild traumatic brain injury and orthopedic injury groups did not differ from each other. The exclusion of motion-corrupted volumes did not significantly change diffusion tensor imaging metrics. Results indicate that automated quantitative estimates of motion artifacts, which are less labour-intensive than manual methods, are appropriate. Results have implications for the reliability of structural MRI research and highlight the importance of considering motion artifacts in studies of pediatric mild traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data available upon reasonable request.

Code availability

Analysis code is available upon reasonable request.

References

  • Afacan, O., Erem, B., Roby, D. P., Roth, N., Roth, A., Prabhu, S. P., & Warfield, S. K. (2016). Evaluation of motion and its effect on brain magnetic resonance image quality in children. Pediatric Radiology, 46(12), 1728–1735. https://doi.org/10.1007/s00247-016-3677-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander-Bloch, A., Clasen, L., Stockman, M., Ronan, L., Lalonde, F., Giedd, J., & Raznahan, A. (2016). Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI: Motion Bias in analyses of structural MRI. Human Brain Mapping, 37(7), 2385–2397. https://doi.org/10.1002/hbm.23180

    Article  PubMed  PubMed Central  Google Scholar 

  • Alosco, M. L., Fedor, A. F., & Gunstad, J. (2014). Attention deficit hyperactivity disorder as a risk factor for concussions in NCAA division-I athletes. Brain Injury, 28(4), 472–474. https://doi.org/10.3109/02699052.2014.887145

    Article  PubMed  Google Scholar 

  • Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage, 125, 1063–1078. https://doi.org/10.1016/j.neuroimage.2015.10.019

    Article  PubMed  Google Scholar 

  • Barrio-Arranz, G., de Luis-García, R., Tristán-Vega, A., Martín-Fernández, M., & Aja-Fernández, S. (2015). Impact of MR acquisition parameters on DTI scalar indexes: A Tractography based approach. PLoS One, 10(10). https://doi.org/10.1371/journal.pone.0137905

  • Beauchamp, M. H., Landry-Roy, C., Gravel, J., Beaudoin, C., & Bernier, A. (2017). Should young children with traumatic brain injury be compared with community or orthopedic control participants? Journal of Neurotrauma, 34(17), 2545–2552. https://doi.org/10.1089/neu.2016.4868

    Article  PubMed  Google Scholar 

  • Benner, T., van der Kouwe, A. J. W., & Sorensen, A. G. (2011). Diffusion imaging with prospective motion correction and reacquisition. Magnetic Resonance in Medicine, 66(1), 154–167. https://doi.org/10.1002/mrm.22837

    Article  PubMed  PubMed Central  Google Scholar 

  • Blumenthal, J. D., Zijdenbos, A., Molloy, E., & Giedd, J. N. (2002). Motion artifact in magnetic resonance imaging: Implications for automated analysis. NeuroImage, 16(1), 89–92. https://doi.org/10.1006/nimg.2002.1076

    Article  PubMed  Google Scholar 

  • Carroll, Linda, J. David Cassidy, Lena Holm, Jess Kraus, and Victor Coronado. 2004. “Methodological issues and research recommendations for mild traumatic brain injury: The who collaborating Centre task force on mild traumatic brain injury.” Journal of Rehabilitation Medicine 36(0):113–125. doi: https://doi.org/10.1080/16501960410023877.

  • Cassidy, J.D., Carroll, L.J., Peloso, P.M., Borg, J., von Holst, H., Holm, L., Kraus, J., Coronado, V.G., WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. (2004). Incidence, risk factors and prevention of mild traumatic brain injury: Results of the WHO collaborating Centre task force on mild traumatic brain injury. Journal of Rehabilitation Medicine (43 Suppl):28–60.

  • Chen, Y., Tymofiyeva, O., Hess, C. P., & Duan, X. (2015). Effects of rejecting diffusion directions on tensor-derived parameters. NeuroImage, 109, 160–170. https://doi.org/10.1016/j.neuroimage.2015.01.010

    Article  PubMed  Google Scholar 

  • Committee on Injury Scaling. (1998). Abbreviated injury scale. Association for the Advancement of Automotive Medicine.

    Google Scholar 

  • Corwin, D. J., Zonfrillo, M. R., Master, C. L., Arbogast, K. B., Grady, M. F., Robinson, R. L., Goodman, A. M., & Wiebe, D. J. (2014). Characteristics of prolonged concussion recovery in a Pediatric subspecialty referral population. The Journal of Pediatrics, 165(6), 1207–1215. https://doi.org/10.1016/j.jpeds.2014.08.034

    Article  PubMed  PubMed Central  Google Scholar 

  • Corwin, D. J., Grady, M. F., Joffe, M. D., & Zonfrillo, M. R. (2017). Pediatric mild traumatic brain injury in the acute setting. Pediatric Emergency Care, 33(9), 643–649. https://doi.org/10.1097/PEC.0000000000001252

    Article  PubMed  PubMed Central  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. NeuroImage, 9(2), 179–194. https://doi.org/10.1006/nimg.1998.0395

    Article  CAS  PubMed  Google Scholar 

  • Ducharme, S., Albaugh, M. D., Nguyen, T.-V., Hudziak, J. J., Mateos-Pérez, J. M., Labbe, A., Evans, A. C., Karama, S., & Brain Development Cooperative Group. (2016). Trajectories of cortical thickness maturation in Normal brain development--the importance of quality control procedures. NeuroImage, 125, 267–279. https://doi.org/10.1016/j.neuroimage.2015.10.010

    Article  PubMed  Google Scholar 

  • Eisenberg, M. A., Andrea, J., Meehan, W., & Mannix, R. (2013). Time interval between concussions and symptom duration. Pediatrics, 132(1), 8–17. https://doi.org/10.1542/peds.2013-0432

    Article  PubMed  Google Scholar 

  • Elhabian, S., Gur, Y., Vachet, C., Piven, J., Styner, M., Leppert, I.R., Bruce Pike, G., Gerig, G. (2014). Subject–motion correction in HARDI acquisitions: Choices and consequences. Frontiers in Neurology, 5. https://doi.org/10.3389/fneur.2014.00240.

  • Engelhardt, L. E., Roe, M. A., Juranek, J., Dana, D. M., Paige Harden, K., Tucker-Drob, E. M., & Church, J. A. (2017). Children’s head motion during FMRI tasks is heritable and stable over time. Developmental Cognitive Neuroscience, 25, 58–68. https://doi.org/10.1016/j.dcn.2017.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Fakhran, S., Yaeger, K., Collins, M., & Alhilali, L. (2014). Sex differences in white matter abnormalities after mild traumatic brain injury: Localization and correlation with outcome. Radiology, 272(3), 815–823. https://doi.org/10.1148/radiol.14132512

    Article  PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149

    Article  PubMed  Google Scholar 

  • Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  PubMed  Google Scholar 

  • Geeraert, B. L., Marc Lebel, R., Mah, A. C., Deoni, S. C., Alsop, D. C., Varma, G., & Lebel, C. (2018). A comparison of inhomogeneous magnetization transfer, myelin volume fraction, and diffusion tensor imaging measures in healthy children. NeuroImage, 182, 343–350. https://doi.org/10.1016/j.neuroimage.2017.09.019

    Article  PubMed  Google Scholar 

  • Geeraert, B. L., Lebel, R. M., & Lebel, C. (2019). A multiparametric analysis of white matter maturation during late childhood and adolescence. Human Brain Mapping, 40(15), 4345–4356. https://doi.org/10.1002/hbm.24706

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerring, J. P., Brady, K. D., Chen, A., Vasa, R., Grados, M., Bandeen-Roche, K. J., Bryan, R. N., & Denckla, M. B. (1998). Premorbid prevalence of ADHD and development of secondary ADHD after closed head injury. Journal of the American Academy of Child and Adolescent Psychiatry, 37(6), 647–654. https://doi.org/10.1097/00004583-199806000-00015

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist, J., Thomas, K., Xu, L., McGuire, L. C., & Coronado, V. G. (2011). Nonfatal traumatic brain injuries related to sports and recreation activities among persons aged ≤19 years — United States, 2001–2009. MMWR Morbity and Mortality WEekly Report, 60(39), 1337–1342.

    Google Scholar 

  • Goodrich-Hunsaker, N. J., Abildskov, T. J., Black, G., Bigler, E. D., Cohen, D. M., Mihalov, L. K., Bangert, B. A., Gerry Taylor, H., & Yeates, K. O. (2018). Age- and sex-related effects in children with mild traumatic brain injury on diffusion magnetic resonance imaging properties: A comparison of Voxelwise and Tractography methods. Journal of Neuroscience Research, 96(4), 626–641. https://doi.org/10.1002/jnr.24142

    Article  CAS  PubMed  Google Scholar 

  • Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of traumatic brain injury: A brief overview. The Journal of Head Trauma Rehabilitation, 21(5), 375–378.

    Article  Google Scholar 

  • Lee, L.-C., Harrington, R. A., Chang, J. J., & Connors, S. L. (2008). Increased risk of injury in children with developmental disabilities. Research in Developmental Disabilities, 29(3), 247–255. https://doi.org/10.1016/j.ridd.2007.05.002

    Article  PubMed  Google Scholar 

  • Ling, J., Merideth, F., Caprihan, A., Pena, A., Teshiba, T., & Mayer, A. R. (2012). Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies. Human Brain Mapping, 33(1), 50–62. https://doi.org/10.1002/hbm.21192

    Article  PubMed  Google Scholar 

  • Lumba-Brown, A., Yeates, K. O., Sarmiento, K., Breiding, M. J., Haegerich, T. M., Gioia, G. A., Turner, M., Benzel, E. C., Suskauer, S. J., Giza, C. C., Joseph, M., Broomand, C., Weissman, B., Gordon, W., Wright, D. W., Moser, R. S., McAvoy, K., Ewing-Cobbs, L., Duhaime, A.-C., … Shelly D. Timmons. (2018). Diagnosis and Management of Mild Traumatic Brain Injury in children: A systematic review. JAMA Pediatrics, 172(11), e182847. https://doi.org/10.1001/jamapediatrics.2018.2847

    Article  PubMed  Google Scholar 

  • Makowski, C., Lepage, M., & Evans, A. C. (2019). Head motion: The dirty little secret of neuroimaging in psychiatry. Journal of Psychiatry & Neuroscience : JPN, 44(1), 62–68. https://doi.org/10.1503/jpn.180022

    Article  Google Scholar 

  • Mayer, A. R., Quinn, D. K., & Master, C. L. (2017). The Spectrum of mild traumatic brain injury: A review. Neurology, 89(6), 623–632. https://doi.org/10.1212/WNL.0000000000004214

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer, A. R., Kaushal, M., Dodd, A. B., Hanlon, F. M., Shaff, N. A., Mannix, R., Master, C. L., Leddy, J. J., Stephenson, D., Wertz, C. J., Suelzer, E. M., Arbogast, K. B., & Meier, T. B. (2018). Advanced biomarkers of Pediatric mild traumatic brain injury: Progress and perils. Neuroscience & Biobehavioral Reviews, 94, 149–165. https://doi.org/10.1016/j.neubiorev.2018.08.002

    Article  CAS  Google Scholar 

  • Reuter, M., Dylan Tisdall, M., Qureshi, A., Buckner, R. L., van der Kouwe, A. J. W., & Fischl, B. (2015). Head motion during MRI acquisition reduces gray matter volume and thickness estimates. NeuroImage, 107, 107–115. https://doi.org/10.1016/j.neuroimage.2014.12.006

    Article  PubMed  Google Scholar 

  • Reynolds, J. E., Grohs, M. N., Dewey, D., & Lebel, C. (2019). Global and regional white matter development in early childhood. NeuroImage, 196, 49–58. https://doi.org/10.1016/j.neuroimage.2019.04.004

    Article  PubMed  Google Scholar 

  • Roalf, D. R., Quarmley, M., Elliott, M. A., Satterthwaite, T. D., Vandekar, S. N., Ruparel, K., Gennatas, E. D., Calkins, M. E., Moore, T. M., Hopson, R., Prabhakaran, K., Jackson, C. T., Verma, R., Hakonarson, H., Gur, R. C., & Gur, R. E. (2016). The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort. NeuroImage, 125, 903–919. https://doi.org/10.1016/j.neuroimage.2015.10.068

    Article  PubMed  Google Scholar 

  • Rosen, A. F. G., Roalf, D. R., Ruparel, K., Blake, J., Seelaus, K., Villa, L. P., Ciric, R., Cook, P. A., Davatzikos, C., Elliott, M. A., de La Garza, A. G., Gennatas, E. D., Quarmley, M., Schmitt, J. E., Shinohara, R. T., Tisdall, M. D., Craddock, R. C., Gur, R. E., Gur, R. C., & Satterthwaite, T. D. (2018). Quantitative assessment of structural image quality. NeuroImage, 169, 407–418. https://doi.org/10.1016/j.neuroimage.2017.12.059

    Article  PubMed  Google Scholar 

  • Ruff, R. M., Iverson, G. L., Barth, J. T., Bush, S. S., Broshek, D. K., & the NAN Policy and Planning Committee. (2009). Recommendations for diagnosing a mild traumatic brain injury: A National Academy of neuropsychology education paper. Archives of Clinical Neuropsychology, 24(1), 3–10. https://doi.org/10.1093/arclin/acp006

    Article  PubMed  Google Scholar 

  • Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., Gur, R. C., & Gur, R. E. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth. NeuroImage, 60(1), 623–632. https://doi.org/10.1016/j.neuroimage.2011.12.063

    Article  PubMed  Google Scholar 

  • Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E., Eickhoff, S. B., Hakonarson, H., Gur, R. C., Gur, R. E., & Wolf, D. H. (2013). An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage, 64, 240–256. https://doi.org/10.1016/j.neuroimage.2012.08.052

    Article  PubMed  Google Scholar 

  • Soares, J.M., Marques, P., Alves, V., Sousa, N. (2013). A Hitchhiker’s guide to diffusion tensor imaging. Frontiers in Neuroscience, 7. https://doi.org/10.3389/fnins.2013.00031.

  • Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet (London, England), 2(7872), 81–84.

    Article  CAS  Google Scholar 

  • Tijssen, R. H. N., Jansen, J. F. A., & Backes, W. H. (2009). Assessing and minimizing the effects of noise and motion in clinical DTI at 3T. Human Brain Mapping, 30(8), 2641–2655. https://doi.org/10.1002/hbm.20695

    Article  PubMed  Google Scholar 

  • Wang, J. Y., Abdi, H., Bakhadirov, K., Diaz-Arrastia, R., & Devous, M. D. (2012). A comprehensive reliability assessment of quantitative diffusion tensor tractography. NeuroImage, 60(2), 1127–1138. https://doi.org/10.1016/j.neuroimage.2011.12.062

  • Ware, A. L., Goodrich-Hunsaker, N. J., Lebel, C., Shukla, A., Wilde, E. A., Abildskov, T. J., Bigler, E. D., Cohen, D. M., Mihalov, L. K., Bacevice, A., Bangert, B. A., Taylor, H. G., & Yeates, K. O. (2020a). Post-Acute Cortical Thickness in Children with Mild Traumatic Brain Injury versus Orthopedic Injury. Journal of Neurotrauma, 37(17), 1892–1901. https://doi.org/10.1089/neu.2019.6850

  • Ware, A. L., Shukla, A., Goodrich-Hunsaker, N. J., Lebel, C., Wilde, E. A., Abildskov, T. J., Bigler, E. D., Cohen, D. M., Mihalov, L. K., Bacevice, A., Bangert, B. A., Taylor, H. G., & Yeates, K. O. (2020b). Post-acute white matter microstructure predicts post-acute and chronic post-concussive symptom severity following mild traumatic brain injury in children. NeuroImage. Clinical, 25, 102106. https://doi.org/10.1016/j.nicl.2019.102106

  • Wilde, E. A., Ware, A. L., Li, X., Wu, T. C., McCauley, S. R., Barnes, A., Newsome, M. R., Biekman, B. D., Hunter, J. V., Chu, Z. D., & Levin, H. S. (2018). Orthopedic injured versus uninjured comparison groups for neuroimaging Research in mild traumatic brain injury. Journal of Neurotrauma, 36(2), 239–249. https://doi.org/10.1089/neu.2017.5513

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeates, K. O., Beauchamp, M., Craig, W., Doan, Q., Zemek, R., Bjornson, B., Gravel, J., Mikrogianakis, A., Goodyear, B., Abdeen, N., Beaulieu, C., Dehaes, M., Deschenes, S., Harris, A., Lebel, C., Lamont, R., Williamson, T., Barlow, K. M., Bernier, F., … Pediatric Emergency Research Canada (PERC). (2017a). Advancing concussion assessment in pediatrics (A-CAP): A prospective, concurrent cohort, longitudinal study of mild traumatic brain injury in children: Protocol study. BMJ Open, 7(7), e017012. https://doi.org/10.1136/bmjopen-2017-017012

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeates, K. O., Beauchamp, M., Craig, W., Doan, Q., Zemek, R., Bjornson, B. H., Gravel, J., Mikrogianakis, A., Goodyear, B., Abdeen, N., Beaulieu, C., Dehaes, M., Deschenes, S., Harris, A., Lebel, C., Lamont, R., Williamson, T., Barlow, K. M., Bernier, F., … Schneider, K. J. (2017b). Advancing concussion assessment in pediatrics (A-CAP): A prospective, concurrent cohort, longitudinal study of mild traumatic brain injury in children: Study protocol. BMJ Open, 7(7). https://doi.org/10.1136/bmjopen-2017-017012

  • Yuan, W., Altaye, M., Ret, J., Schmithorst, V., Byars, A. W., Plante, E., & Holland, S. K. (2009). Quantification of head motion in children during various FMRI language tasks. Human Brain Mapping, 30(5), 1481–1489. https://doi.org/10.1002/hbm.20616

    Article  PubMed  Google Scholar 

  • Yue, J. K., Vassar, M. J., Lingsma, H. F., Cooper, S. R., Okonkwo, D. O., Valadka, A. B., Gordon, W. A., Maas, A. I. R., Mukherjee, P., Yuh, E. L., Puccio, A. M., Schnyer, D. M., Manley, G. T., & TRACK-TBI Investigators. (2013). Transforming Research and clinical knowledge in traumatic brain injury pilot: Multicenter implementation of the common data elements for traumatic brain injury. Journal of Neurotrauma, 30(22), 1831–1844. https://doi.org/10.1089/neu.2013.2970

    Article  PubMed  PubMed Central  Google Scholar 

  • Zemek, R., Barrowman, N., Freedman, S. B., Gravel, J., Gagnon, I., McGahern, C., Aglipay, M., Sangha, G., Boutis, K., Beer, D., Craig, W., Burns, E., Farion, K. J., Mikrogianakis, A., Barlow, K., Dubrovsky, A. S., Meeuwisse, W., Gioia, G., Meehan, W. P., … Martin H. Osmond. (2016). Clinical risk score for persistent Postconcussion symptoms among children with acute concussion in the ED. JAMA, 315(10), 1014–1025. https://doi.org/10.1001/jama.2016.1203

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by a Canadian Institute of Health Research (CIHR) Foundation Grant (FDN143304), as well as by the Ronald and Irene Ward Chair in Pediatric Brain Injury from the Alberta Children’s Hospital Foundation, the Canada Research Chair program, the Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, and the Killam Postdoctoral Fellowship at the University of Calgary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley L. Ware.

Ethics declarations

Ethics approval

I verify that appropriate Institutional Review Board (IRB) approval has been obtained for the use of human or animal subjects. Study was conducted in accordance with the IRB at the University of Calgary: REB15–2296 for the A-CAP study and REB13–1346 for the adolescent study.

Consent to participate

I verify that all study participants and their caregivers provided written informed consent.

Conflicts of interest/Competing interests

None of the authors have a conflict of interest to declare.

Conflict of interest

The submitted work has not been published previously and is not being considered for publication elsewhere. Material has not been reproduced from prior publications, whether by the same or different authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ashley L. Ware and Ayushi Shukla are sharing first authorship.

Supplementary Information

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ware, A.L., Shukla, A., Guo, S. et al. Participant factors that contribute to magnetic resonance imaging motion artifacts in children with mild traumatic brain injury or orthopedic injury. Brain Imaging and Behavior 16, 991–1002 (2022). https://doi.org/10.1007/s11682-021-00582-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-021-00582-w

Keywords

Navigation