Skip to main content
Log in

Altered functional connectivity of the thalamus in tinnitus patients is correlated with symptom alleviation after sound therapy

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Altered functional connectivity (FC) of the thalamus has been proven to be an important finding in tinnitus patients. Tinnitus can be effectively desensitized by sound therapy. However, it is still unclear whether and how sound therapy affects the FC of the thalamus. Resting-state functional magnetic resonance imaging data and anatomical data were longitudinally collected from 25 idiopathic tinnitus patients before and after 12 weeks of sound therapy by using adjusted narrow band noise and from 25 matched healthy controls at the same time interval without any intervention. The FC of bilateral thalami were analyzed by setting the left and right thalamus as the regions of interest. Significant main effect of group on the FC of the thalamus were found mainly in the key components of the default mode network, limbic network, salience network, cognitive control network, auditory network and occipital region. FC values between the thalamus, inferior frontal gyrus (IFG), and anterior cingulate cortex (ACC) featured higher values in the tinnitus group at baseline compared to the healthy controls and restoration in tinnitus patients after treatment. Decreased Tinnitus Handicap Inventory (THI) scores and decreased FC values between the right thalamus and right IFG were positively correlated (r = 0.476, P = 0.016). Abnormal FC of the thalamus is associated with multiple brain networks. Sound therapy has a normalizing effect on the enhanced FC of the thalamus-IFG and thalamus-ACC, representing decreased tinnitus attention control and less involvement of the noise-canceling system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aytac, I., Baysal, E., Gulsen, S., Tumuklu, K., Durucu, C., Mumbuc, L. S., & Kanlikama, M. (2017). Masking treatment and its effect on tinnitus parameters. The International Tinnitus Journal, 21(2), 83–89.

    Article  PubMed  Google Scholar 

  • Bauer, C. A. (2018). Tinnitus. New England Journal of Medicine, 378(13), 1224–1231.

    Article  Google Scholar 

  • Bhatt, J. M., Lin, H. W., & Bhattacharyya, N. (2016). Prevalence, severity, exposures, and treatment patterns of tinnitus in the United States. JAMA Otolaryngology. Head & Neck Surgery, 142(10), 959–965.

    Article  Google Scholar 

  • Boyen, K., de Kleine, E., van Dijk, P., & Langers, D. R. (2014). Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss. Hearing Research, 312, 48–59.

    Article  PubMed  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter-Thompson, J. R., Schmidt, S. A., & Husain, F. T. (2015). Neural plasticity of mild tinnitus: An fMRI investigation comparing those recently diagnosed with tinnitus to those that had tinnitus for a Long period of time. Neural Plasticity, 2015, 161478.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. C., Zhang, J., Li, X. W., Xia, W., Feng, X., Gao, B., Ju, S. H., Wang, J., Salvi, R., & Teng, G. J. (2014). Aberrant spontaneous brain activity in chronic tinnitus patients revealed by resting-state functional MRI. Neuroimage Clin, 6, 222–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. C., Wang, F., Wang, J., Bo, F., Xia, W., Gu, J. P., & Yin, X. (2017). Resting-state brain abnormalities in chronic subjective tinnitus: A meta-analysis. Frontiers in Human Neuroscience, 11, 22–33.

    PubMed  PubMed Central  Google Scholar 

  • De Ridder, D., Vanneste, S., Weisz, N., Londero, A., Schlee, W., Elgoyhen, A. B., & Langguth, B. (2014). An integrative model of auditory phantom perception: Tinnitus as a unified percept of interacting separable subnetworks. Neuroscience and Biobehavioral Reviews, 44, 16–32.

    Article  PubMed  Google Scholar 

  • Formanek, M., Migalova, P., Krulova, P., Bar, M., Jancatova, D., Zakopcanova-Srovnalova, H., Tomaskova, H., Zelenik, K., & Kominek, P. (2018). Combined transcranial magnetic stimulation in the treatment of chronic tinnitus. Annals of Clinical Translational Neurology, 5(7), 857–864.

    Article  PubMed  PubMed Central  Google Scholar 

  • Golm, D., Schmidt-Samoa, C., Dechent, P., & Kroner-Herwig, B. (2013). Neural correlates of tinnitus related distress: An fMRI-study. Hearing Research, 295, 87–99.

    Article  PubMed  Google Scholar 

  • Henry, J. A., Schechter, M. A., Nagler, S. M., & Fausti, S. A. (2002). Comparison of tinnitus masking and tinnitus retraining therapy. Journal of the American Academy of Audiology, 13(10), 559–581.

    Article  PubMed  Google Scholar 

  • Herrero, M. T., Barcia, C., & Navarro, J. M. (2002). Functional anatomy of thalamus and basal ganglia. Child's Nervous System, 18(8), 386–404.

    Article  PubMed  Google Scholar 

  • Husain, F. T. (2016). Neural networks of tinnitus in humans: Elucidating severity and habituation. Hearing Research, 334, 37–48.

    Article  PubMed  Google Scholar 

  • Kim, S. H., Jang, J. H., Lee, S. Y., Han, J. J., Koo, J. W., Vanneste, S., De Ridder, D., & Song, J. J. (2016). Neural substrates predicting short-term improvement of tinnitus loudness and distress after modified tinnitus retraining therapy. Scientific Reports, 6, 29140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S. Y., Chang, M. Y., Hong, M., Yoo, S. G., Oh, D., & Park, M. K. (2017). Tinnitus therapy using tailor-made notched music delivered via a smartphone application and Ginko combined treatment: A pilot study. Auris Nasus Larynx, 44(5), 528–533.

    Article  PubMed  Google Scholar 

  • Kreuzer, P. M., Poeppl, T. B., Rupprecht, R., Vielsmeier, V., Lehner, A., Langguth, B., & Schecklmann, M. (2017). Individualized repetitive transcranial magnetic stimulation treatment in chronic tinnitus? Frontiers in Neurology, 8, 126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krick, C. M., Grapp, M., Daneshvar-Talebi, J., Reith, W., Plinkert, P. K., & Bolay, H. V. (2015). Cortical reorganization in recent-onset tinnitus patients by the Heidelberg model of music therapy. Frontiers in Neuroscience, 9, 49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krick, C. M., Argstatter, H., Grapp, M., Plinkert, P. K., & Reith, W. (2017a). Heidelberg neuro-music therapy enhances task-negative activity in tinnitus patients. Frontiers in Neuroscience, 11, 384.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krick, C. M., Argstatter, H., Grapp, M., Plinkert, P. K., & Reith, W. (2017b). Heidelberg neuro-music therapy restores attention-related activity in the angular gyrus in chronic tinnitus patients. Frontiers in Neuroscience, 11, 418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanting, C. P., de Kleine, E., Langers, D. R., & van Dijk, P. (2014). Unilateral tinnitus: Changes in connectivity and response lateralization measured with fMRI. PLoS One, 9(10), e110704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leaver, A. M., Turesky, T. K., Seydell-Greenwald, A., Morgan, S., Kim, H. J., & Rauschecker, J. P. (2016). Intrinsic network activity in tinnitus investigated using functional MRI. Human Brain Mapping, 37(8), 2717–2735.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, H. Y., Choi, M. S., Chang, D. S., & Cho, C. S. (2017). Combined Bifrontal transcranial direct current stimulation and tailor-made notched music training in chronic tinnitus. J Audiol Otol, 21(1), 22–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Lv, H., Jiang, T., Xie, J., He, L., Wang, G., Liu, J., Wang, Z., & Gong, S. (2018). The Cochleural alternating acoustic beam therapy (CAABT): A pre-clinical trial. American Journal of Otolaryngology, 39(4), 401–409.

    Article  PubMed  Google Scholar 

  • Llinas, R. R., Ribary, U., Jeanmonod, D., Kronberg, E., & Mitra, P. P. (1999). Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proceedings of the National Academy of Sciences of the United States of America, 96(26), 15222–15227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, H., Zhao, P., Liu, Z., Yan, F., Li, T., Dong, C., & Wang, Z. (2015). Resting-state functional connectivity density mapping of etiology confirmed unilateral pulsatile tinnitus patients: Altered functional hubs in the early stage of disease. Neuroscience, 310, 27–37.

    Article  CAS  Google Scholar 

  • Lv, H., Zhao, P., Liu, Z., Li, R., Zhang, L., Wang, P., Yan, F., Liu, L., Wang, G., Zeng, R., et al. (2017). Abnormal regional activity and functional connectivity in resting-state brain networks associated with etiology confirmed unilateral pulsatile tinnitus in the early stage of disease. Hearing Research, 346, 55–61.

    Article  PubMed  Google Scholar 

  • Lv H, Liu Y, Wang H, Liu C, Zhao P, Zhang Z, Wang Z, Yang Z, Gong S, Wang Z. 2019a. Effects of sound therapy on resting-state functional brain networks in patients with tinnitus: A graph-theoretical-based study. Journal of Magnetic Resonance Imaging:in press.

  • Lv, H., Zeng, N., Liu, C., Chen, Y., Zhao, P., Wang, H., Cheng, X., Zhang, P., Wang, Z., Yang, Z., et al. (2019b). Baseline functional connectivity features of neural network nodes can predict improvement after sound therapy through adjusted narrow band noise in tinnitus patients. Frontiers in Neuroscience, 13, 614–624.

    Article  Google Scholar 

  • Makar, S. K., Mukundan, G., & Gore, G. (2017). Treatment of tinnitus: A scoping review. The International Tinnitus Journal, 21(2), 144–156.

    PubMed  Google Scholar 

  • Norena, A. J., & Farley, B. J. (2013). Tinnitus-related neural activity: Theories of generation, propagation, and centralization. Hearing Research, 295, 161–171.

    Article  PubMed  Google Scholar 

  • Okamoto, H., Stracke, H., Stoll, W., & Pantev, C. (2010). Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1207–1210.

    Article  CAS  PubMed  Google Scholar 

  • Ralli, M., Greco, A., Turchetta, R., Altissimi, G., de Vincentiis, M., & Cianfrone, G. (2017). Somatosensory tinnitus: Current evidence and future perspectives. The Journal of International Medical Research, 45(3), 933–947.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rauschecker, J. P., Leaver, A. M., & Muhlau, M. (2010). Tuning out the noise: Limbic-auditory interactions in tinnitus. Neuron, 66(6), 819–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roland, L. T., Lenze, E. J., Hardin, F. M., Kallogjeri, D., Nicklaus, J., Wineland, A. M., Fendell, G., Peelle, J. E., & Piccirillo, J. F. (2015). Effects of mindfulness based stress reduction therapy on subjective bother and neural connectivity in chronic tinnitus. Otolaryngology and Head and Neck Surgery, 152(5), 919–926.

    Article  Google Scholar 

  • Roland, L. T., Peelle, J. E., Kallogjeri, D., Nicklaus, J., & Piccirillo, J. F. (2016). The effect of noninvasive brain stimulation on neural connectivity in tinnitus: A randomized trial. Laryngoscope, 126(5), 1201–1206.

    Article  PubMed  Google Scholar 

  • Schecklmann M, Landgrebe M, Poeppl TB, Kreuzer P, Manner P, Marienhagen J, Wack DS, Kleinjung T, Hajak G, Langguth B. 2013. Neural correlates of tinnitus duration and distress: a positron emission tomography study. p 233–40.

  • Searchfield, G. D., Kaur, M., & Martin, W. H. (2010). Hearing aids as an adjunct to counseling: Tinnitus patients who choose amplification do better than those that don't. International Journal of Audiology, 49(8), 574–579.

    Article  PubMed  Google Scholar 

  • Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., He, Y., Yan, C. G., & Zang, Y. F. (2011). REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 6(9), e25031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J. J., Vanneste, S., & De Ridder, D. (2015a). Dysfunctional noise cancelling of the rostral anterior cingulate cortex in tinnitus patients. PLoS One, 10(4), e0123538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song, J. J., Vanneste, S., Schlee, W., Van de Heyning, P., & De Ridder, D. (2015b). Onset-related differences in neural substrates of tinnitus-related distress: The anterior cingulate cortex in late-onset tinnitus, and the frontal cortex in early-onset tinnitus. Brain Structure & Function, 220(1), 571–584.

    Article  Google Scholar 

  • Tunkel DE, Bauer CA, Sun GH, Rosenfeld RM, Chandrasekhar SS, Cunningham EJ, Archer SM, Blakley BW, Carter JM, Granieri EC and others. 2014. Clinical practice guideline: tinnitus. Otolaryngology and Head and Neck Surgery 151(2 Suppl):S1-S40.

  • Vanneste, S., van de Heyning, P., & De Ridder, D. (2011). The neural network of phantom sound changes over time: A comparison between recent-onset and chronic tinnitus patients. The European Journal of Neuroscience, 34(5), 718–731.

    Article  PubMed  Google Scholar 

  • von Boetticher, A. (2011). Ginkgo biloba extract in the treatment of tinnitus: A systematic review. Neuropsychiatric Disease and Treatment, 7, 441–447.

    Article  CAS  Google Scholar 

  • Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9, 386.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox CE, Abbott CC, Calhoun VD. (2018). Alterations in resting-state functional connectivity in substance use disorders and treatment implications. Prog Neuropsychopharmacol Biol Psychiatry.

  • Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., Li, Q., Zuo, X. N., Castellanos, F. X., & Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76, 183–201.

    Article  PubMed  Google Scholar 

  • Zeman, F., Koller, M., Figueiredo, R., Aazevedo, A., Rates, M., Coelho, C., Kleinjung, T., de Ridder, D., Langguth, B., & Landgrebe, M. (2011). Tinnitus handicap inventory for evaluating treatment effects: Which changes are clinically relevant? Otolaryngology and Head and Neck Surgery, 145(2), 282–287.

    Article  Google Scholar 

  • Zenner, H. P., & Zalaman, I. M. (2004). Cognitive tinnitus sensitization: Behavioral and neurophysiological aspects of tinnitus centralization. Acta Oto-Laryngologica, 124(4), 436–439.

    Article  PubMed  Google Scholar 

  • Zhang, J. (2013). Auditory cortex stimulation to suppress tinnitus: Mechanisms and strategies. Hearing Research, 295, 38–57.

    Article  PubMed  Google Scholar 

  • Zhang, J., Chen, Y. C., Feng, X., Yang, M., Liu, B., Qian, C., Wang, J., Salvi, R., & Teng, G. J. (2015). Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus. European Journal of Radiology, 84(7), 1277–1284.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We specially thank Prof. Hong You, from Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, for her support to our research. We thank Dr. Shen Liu, from the Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, for their assistance with the data collection and audiological tests.

Funding

This work was supported by Grant No.81701644, No.61801311 and No. 81871322 from the National Natural Science Foundation of China, No. [2015] 160 from Beijing Scholars Program, Grant No. 7172064 and No. 7182044 from Beijing Natural Science Foundation, No. PX2018001 from Beijing Hospitals Authority, QML20180103 from Beijing Hospitals Authority Youth Programme, No. YYZZ2017B01 from Beijing Friendship Hospital, Capital Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Lv.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Ethical approval

This research involved human participants. All authors have declared that this research was approved by the Institutional Review Board (IRB) of Beijing Friendship Hospital, Capital Medical University, Beijing, China. Written informed consent was obtained from all subjects enrolled in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Liu, C., Wang, Z. et al. Altered functional connectivity of the thalamus in tinnitus patients is correlated with symptom alleviation after sound therapy. Brain Imaging and Behavior 14, 2668–2678 (2020). https://doi.org/10.1007/s11682-019-00218-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00218-0

Keywords

Navigation