Skip to main content

Advertisement

Log in

PET imaging of tau protein targets: a methodology perspective

  • Advances in Imaging (Hadassah Conference)
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The two neuropathological hallmarks of Alzheimer’s disease (AD) are amyloid-\(\beta\) plaques and neurofibrillary tangles of tau protein. Fifteen years ago, Positron Emission Tomography (PET) with Pittsburgh Compound B (11C-PiB) enabled selective in-vivo visualization of amyloid-\(\beta\) plaque deposits and has since provided valuable information about the role of amyloid-\(\beta\) deposition in AD. The progression of tau deposition has been shown to be highly associated with neuronal loss, neurodegeneration, and cognitive decline. Until recently it was not possible to visualize tau deposition in-vivo, but several tau PET tracers are now available in different stages of clinical development. To date, no tau tracer has been approved by the Food and Drug Administration for use in the evaluation of AD or other tauopathies, despite very active research efforts. In this paper we review the recent developments in tau PET imaging with a focus on in-vivo findings in AD and discuss the challenges associated with tau tracer development, the status of development and validation of different tau tracers, and the clinical information these provide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Courtesy of Cristian Salinas, Biogen

Similar content being viewed by others

References

  • Abdi, H., Williams, L., Beaton, D., Posamentier, M., Harris, T., Krishnan, A., et al. (2012). Analysis of regional cerebral blood flow data to discriminate among Alzheimer’s disease, frontotemporal dementia, and elderly controls: a multi-block barycentric discriminant analysis (MUBADA) methodology. Journal Alzheimers Diseases, 31(S3), S189-201.

    Google Scholar 

  • Alzforum networking for a cure, News April 2017. (http://www.alzforum.org/news/conference-coverage/next-generation-tau-pet-tracers-strut-their-stuff).

  • Alzheimer’s Association. (2015). Changing the Trajectory of Alzheimer’s Disease: How a Treatment by 2025 Saves Lives and Dollars, Alzheimer’s Association report. http://www.alz.org/documents custom/trajectory.pdf.

  • Alzheimer’s Association. (2016). 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 12(4), 459–509.

  • Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T., & Hyman, B. T. (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 42(3), 631–631.

    Article  CAS  PubMed  Google Scholar 

  • Baker, S. L., Lockhart, S. N., Price, J. C., He, M., Huesman, R. H., Schonhaut, D., et al. (2016). Reference tissue–based kinetic evaluation of 18 F-AV-1451 for tau imaging. Journal of Nuclear Medicine, 58(2), 332–338.

    Article  PubMed  CAS  Google Scholar 

  • Barret, O., Alagille, D., Sanabria, S., Comley, R. A., Weimer, R. M., Borroni, E., et al. (2016). Kinetic modeling of the tau PET tracer 18F- AV-1451 in human healthy volunteers and alzheimer’s disease subjects. Journal of Nuclear Medicine, 58(7), 1124–1131.

    Article  PubMed  CAS  Google Scholar 

  • Barret, O., Seibly, J., Stephens, A., Madonia, J., Alagille, D., Mueller, A., et al. (2017). Initial clinical PET studies with the novel tau agent 18-F PI-2620 in Alzheimer’s disease and controls. Journal of Nuclear Medicine, 58(Suppl 1), 630.

  • Becker, J. A., Cosio, D., Lee, C., Andrea, N., Sperling, R., & Johnson, K. (2017). A cortical cluster-based measure of change in longitudinal 18F-T807 FTP PET. Human Amyloid Imaging, Conference abstract.

  • Betthauser, T. J., Lao, P. J., Murali, D., Barnhart, T. E., et al. (2017). In vivo comparison of tau radioligands 18F-THK-5351 and 18F-THK-5317. Journal of Nuclear Medicine, 58(6), 996–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betthauser, T. J., Murali, D., Barnhart, T., Stone, C., et al. (2018). In vivo observations and quantification of tau with [F-18]MK-6240 PET from young controls to Alzheimer’s disease. Human Amyloid Imaging, Conference abstract.

  • Bierer, L. M., Hof, P. R., Purohit, D. P., Carlin, L., Schmeidler, J., Davis, K. L., et al. (1995). Neocortical neurofibrillary tangles correlate with dementia severity in alzheimer’s disease. Archives of Neurology, 52(1), 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259.

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., & Braak, E. (1999). Temporal sequence of Alzheimer’s disease-related pathology. In A. Peters, J. H. Morrison (Eds.), Cerebral Cortex (vol 14 pp. 475–512). Boston: Springer.

  • Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in alzheimer disease: age categories from 1 to 100 Years. Journal of Neuropathology & Experimental Neurology, 70(11), 960–969.

    Article  CAS  Google Scholar 

  • Carson, R. E., Channing, M. A., Blasberg, R. G., Dunn, B. B., Cohen, R. M., Rice, K. C., & Herscovitch, P. (1993). Comparison of bolus and infusion methods for receptor quantitation: application to 18F-cyclofoxy and positron emission tomography. Journal of Cerebral Blood Flow and Metabolism, 13, 24–42.

    Article  CAS  PubMed  Google Scholar 

  • Chien, D., Bahri, S., Szardenings, A., Walsh, J., Mu, F., Su, M., et al. (2013). Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. Journal of Alzheimers Disease, 34, 457–68.

    Article  CAS  Google Scholar 

  • Chien, D., Szardenings, A., Bahri, S., Walsh, J., Mu, F., Xia, C., et al. (2014). Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. Journal of Alzheimers Disease, 38, 171–84.

    Article  Google Scholar 

  • Chiotis, K., Stenkrona, P., Almkvist, O., Arakawa, R., Takano, A., Stepanov, V., et al. (2017). Head-to-head comparison of tau-specific tracers in Alzheimer’s disease: [11C]THK5351 vs [11C]PBB3 PET imaging. Human Amyloid Imaging, Conference abstract.

  • Cho, H., Choi, J. Y., Hwang, M. S., Kim, Y. J., Lee, H. M., Lee, H. S., Lee, J. H., Ryu, Y. H., Lee, M. S., & Lyoo, C. H. (2016). In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Annals of Neurology, 80(2), 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Crary, J., Trojanowski, J., Schneider, J., Abisambra, J., Abner, E., Alafuzoff, I., et al. (2014). Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathologica, 128, 755–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dani, M., Brooks, D., & Edison, P. (2016). Tau imaging in neurodegener- ative diseases. European Journal Nuclear Medicine and Molecular Imaging, 43, 1139–1150.

    Article  CAS  Google Scholar 

  • Delacourte, A., David, J. P., Sergeant, N., Buee, L., Wattez, A., Vermersch, P., et al. (1999). The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology, 52(6), 1158–1158.

    Article  CAS  PubMed  Google Scholar 

  • Devous, M. D., Joshi, A. D., Navitsky, M., Kennedy, I., Lu, M., Pontecorvo, M. J., et al. (2015). Understanding the topology of 18F-AV-1451 (also known as T807) PET tau images in Alzheimer’s disease. Alzheimer’s & Dementia, 11(7), 283–284.

    Article  Google Scholar 

  • Donohue, M. C., Sperling, R. A., Petersen, R., Sun, C.-K., Weiner, M. W., & and, P. S. A (2017). Association Between Elevated Brain Amyloid and Subsequent Cognitive Decline Among Cognitively Normal Persons. JAMA, 317(22), 2305.

  • Drachman, D. A. (2014). The amyloid hypothesis time to move on: Amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimer’s & Dementia, 10(3), 372–380.

    Article  Google Scholar 

  • Duyckaerts, C., Braak, H., Brion, J., Buee, L., Del, T. K., Goedert, M., et al. (2015). PART is part of Alzheimer disease. Acta Neuropathologica, 129, 749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EXPEDITION 3 -Progress of Mild Alzheimer’s Disease in Participants on Solanezumab Versus Placebo. https://clinicaltrials.gov/ct2/show/study/NCT01900665.

  • Fessel, J. (2018) Amyloid is essential but insufficient for Alzheimer causation: addition of subcellular cofactors is required for dementia. International Journal of Geriatric Psychiatry, 33, 14–21. 

  • Fodero-Tavoletti, M. T., Okamura, N., Mulligan, R., Furumoto, S., Connor, A. R., Kudo, Y., et al. (2010). Characterisation of [18F]-THK523 a novel in vivo tau imaging ligand. Alzheimer’s & Dementia, 6(4), S432.

    Article  Google Scholar 

  • Giacobini, E., & Gold, G. (2013). Alzheimer disease therapy: moving from amyloid-β to tau. Nature Reviews Neurology, 9(12), 677–686.

    Article  CAS  PubMed  Google Scholar 

  • Goate, A., Chartier-Harlin, M., Mullan, M., Brown, J., Crawford, F., Fidani, L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349, 704–706.

    Article  CAS  PubMed  Google Scholar 

  • Gunn, R. N., Slifstein, M., Searle, G. E., & Price, J. C. (2015). Quantitative imaging of protein targets in the human brain with PET. Physics in Medicine and Biology, 60(22), R363–R411.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, A., Schain, M., Erlandsson, M., Sjolin, P., James, G., Strandberg, O., et al. (2017). Modeling strategies for quantification of in vivo 18F- AV1451 binding in patients with tau pathology. Journal of Nuclear Medicine, 58(4), 623–631.

    Article  CAS  PubMed  Google Scholar 

  • Hanseeuw, B. J., Betensky, R. A., Schultz, A. P., Papp, K. V., Mormino, E. C., Sepulcre, J., et al. (2017). Fluorodeoxyglucose metabolism associated with tau-amyloid interaction predicts memory decline. Annals of Neurology, 81(4), 583–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen, A. K., Brooks, D. J., & Borghammer, P. (2017). MAO-B Inhibitors do not block. in vivo Flortaucipir([18F]-AV-1451) binding. Molecular Imaging Biology. https://doi.org/10.1007/s11307-017-1143-1.

    Article  Google Scholar 

  • Harada, R., Ishiki, A., Kai, H., Sato, N., Furukawa, K., Furumoto, S., Tago, T., et al. (2017). Correlations of 18F-THK5351 PET with post-mortem burden of tau and astrogliosis in Alzheimer’s disease. Journal of Nuclear Medicine. https://doi.org/10.2967/jnumed.117.197426.

    Article  PubMed  Google Scholar 

  • Harada, R., Okamura, N., Furumoto, S., Furukawa, K., Ishiki, A., Tomita, N., et al. (2015). 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. Journal of Nuclear Medicine, 57(2), 208–214.

    Article  PubMed  CAS  Google Scholar 

  • Harada, R., Okamura, N., Furumoto, S., Tago, T., Yanai, K., Arai, H., et al. (2016). Characteristics of Tau and Its Ligands in PET Imaging. Biomolecules, 6(1), 7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardy, J. (2002). The amyloid hypothesis of alzheimer’s disease: progress and problems on the road to therapeutics. Science, 297(5580), 353–356.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, J., & Owen, M. (2016). Alzheimer’s disease: the amyloid hypothesis on trial. British Journal Psychiatry, 208, 1–3.

    Article  Google Scholar 

  • Heneka, M., Carson, M., El, K. J., Landreth, G., Brosseron, F., Feinstein, D., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurology, 14, 388–405.

    Article  CAS  PubMed  Google Scholar 

  • Herrup, K. (2015). The case for rejecting the amyloid cascade hypothesis. Nature Neuroscience, 18(6), 794–799.

    Article  CAS  PubMed  Google Scholar 

  • Honer, M., Gobbi, L., Knust, H., Kuwabara, H., Muri, D., et al. (2017). Preclinical evaluation of (18)F-RO6958948, (11)C-RO6931643 and (11)C-RO6924963 as novel radiotracers for imaging aggregated tau in AD with positron emission tomography. Journal Nuclear Medicine. https://doi.org/10.2967/jnumed.117.196741.

  • Hostetler, E., Walji, A., Zeng, Z., Miller, P., Bennacef, I., Salinas, C., et al. (2016). Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. Journal of Nuclear Medicine, 57(10), 1599–1606.

    Article  CAS  PubMed  Google Scholar 

  • Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., et al. (2012). National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s & Dementia, 8(1), 1–13.

    Article  Google Scholar 

  • Ikonomovic, M. D., Abrahamson, E. E., Price, J. C., Mathis, C. A., & Klunk, W. E. (2016). [F-18]AV-1451 PET retention in the choroid plexus: more than “off-target” binding. Annals of Neurology, 80(2), 307–308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang, Y., Lyoo, C. H., Park, S., et al. (2017). Head to head comparison of [18F] AV-1451 and [18F] THK5351 for tau imaging in Alzheimer’s disease and frontotemporal dementia. European Journal Nuclear Medicine Molecular Imaging (2017). https://doi.org/10.1007/s00259-017-3876-0.

    Article  Google Scholar 

  • Johnson, K. A., Schultz, A., Betensky, R. A., Becker, J. A., Sepulcre, J., Rentz, D., et al. (2016). Tau positron emission tomographic imaging in aging and early Alzheimer disease. Annals of Neurology, 79(1), 110–119.

    Article  PubMed  Google Scholar 

  • Jonsson, T., Atwal, J., Steinberg, S., Snaedal, J., Jonsson, P., Bjornsson, S., et al. (2012). A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 488, 96 – 9.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, Y., Ichise, M., Ito, H., Shimada, H., Ikoma, Y., Seki, C., et al. (2015). PET Quantification of Tau Pathology in Human Brain with 11C- PBB3. Journal of Nuclear Medicine, 56(9), 1359–1365.

    Article  CAS  PubMed  Google Scholar 

  • Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., Bergström, M., et al. (2004). Imaging brain amyloid in Alzheimer’s disease using the novel PET tracer, PIB. Annals of Neurology, 55, 306–319.

    Article  CAS  PubMed  Google Scholar 

  • Landau, S. (2016). The clinical significance of increasing amyloid in cognitively normal, amyloid negative individuals. Human Amyloid Imaging, Conference abstract.

  • Lee, C., Marquie, M., Andrea, N., LaPoint, M., Jin, D., Jacobs, H., et al. (2017). 18F Flortaucipir binding in choroid plexus: association with race and hippocampus binding. Human Amyloid Imaging, Conference abstract.

  • Lemoine, L., Gillberg, P., Svedberg, M., Stepanov, V., Jia, Z., Huang, J., Nag, S., Tian, H., et al. (2017). Comparative binding properties of the tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. Alzheimers Research & Theraphy, 9(1), 96.

    Article  CAS  Google Scholar 

  • Liu, F., & Gong, C. X. (2008). Tau exon 10 alternative splicing and tauopathies. Molecular Neurodegeneration, 3(1), 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lockhart, S. N., Baker, S., Okamura, N., Furukawa, K., Ishiki, A., Furumoto, S., et al. (2016). Dynamic PET measures of tau accumulation in cognitively normal older adults and Alzheimer’s disease patients measured using [18F] THK-5351. PLoS ONE, 11(6), e0158460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopresti, B. J., Klunk, W. E., Mathis, C. A., Hoge, J. A., Ziolko, S. K., Lu, X., Meltzer, C. C., et al.. Schimmel, K., Tsopelas, N. D., DeKosky, S. T., Price, J. C. (2005). Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. Journal of Nuclear Medicine, 46(12), 1959–1972.

    CAS  PubMed  Google Scholar 

  • Lowe, V., Curran, G., Fang, P., Liesinger, A., Josephs, K., Parisi, J., et al. (2016). An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathologica Communications, 4, 58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowe, V., Murray, M., Sarma, V., Curran, G., Fang, P., Pandey, M., et al. (2017). An autoradiographic evaluation of THK-5351 compared to AV-1451. Human Amyloid Imaging, Conference abstract.

  • Maass, A., Landau, S., Baker, S. L., Horng, A., Lockhart, S. N., La Joie, R., et al. (2017). Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer’s disease. Neuroimage, 157, 448–463.

    Article  CAS  PubMed  Google Scholar 

  • Marik, J., Tinianow, J., Ogasawara, A., Liu, N., Williams, S., Lyssikatos, J., Barret, O., et al. (2016). [18F]GTP1 – A tau specific tracer for imaging tau-pathology in AD. Human Amyloid Imaging, Conference abstract.

  • Maruyama, M., Shimada, H., Suhara, T., Shinotoh, H., Ji, B., et al. (2013). Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron, 79(6), 1094-108. https://doi.org/10.1016/j.neuron.2013.07.037.

  • Marquie, M., Aguero, C., Siao Tick Chong, M., Ramanan, P., Saez-Calveras, N., et al. (2018). F-18]-AV-1451 binding profile in Chronic Traumatic Encephalopathy: a postmortem case series. Human Amyloid Imaging, Conference abstract.

  • Marquie, M., Normandin, M. D., Meltzer, A. C., Chong, M. S. T., Andrea, N. V., Anton-Fernandez, A., et al. (2017). Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies. Annals of Neurology, 81(1), 117–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquie, M., Normandin, M. D., Vanderburg, C. R., Costantino, I. M., Bien, E. A., Rycyna, L. G., et al. (2015). Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Annals of Neurology, 78(5), 787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathis, C. A., Klunk, W. E., Price, J. C., & DeKosky, S. T. (2005). Amyloid imaging with Pittsburgh Compound B. Alzheimer’s & Dementia, 1(1), S6–S7.

    Article  Google Scholar 

  • Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, et al. (2006). [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology, 67, 446–452.

    Article  CAS  PubMed  Google Scholar 

  • Mormino, E., Schultz, A., Papp, K., LaPoint, M., Hanseeuw, B., Hedden, T., et al. (2017). Neocortical Tau and hippocampus volume reflect distinct processes in preclinical Alzheimer’s disease. Alzheimer’s & Dementia, 13(7), S5–S6.

    Article  Google Scholar 

  • Mueller, A., Kroth, H., Berndt, M., Capotosti, F., Molette, J., Schieferstein, H., et al. (2017). Characterization of the novel PET tracer PI-2620 for the assessment of Tau pathology in Alzheimer’s disease and other tauopathies. Journal of Nuclear Medicine, 58(Suppl.1), 847.

    Google Scholar 

  • Ng, K. P., Pascoal, T. A., Mathotaarachchi, S., Therriault, J., Kang, M. S., Shin, M., et al. (2017). Monoamine oxidase B inhibitor, selegiline reduces 18F-THK5351 uptake in the human brain. Alzheimers Res Ther, 9(1), 25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamura, N., Furumoto, S., Fodero-Tavoletti, M. T., Mulligan, R. S., Harada, R., Yates, P., et al. (2014). Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain, 137 (6), 1762–1771.

    Article  PubMed  Google Scholar 

  • Okamura, N., Furumoto, S., Harada, R., Tago, T., Yoshikawa, T., Fodero- Tavoletti, M., et al. (2013). Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. Journal of Nuclear Medicine, 54(8), 1420–1427.

    Article  CAS  PubMed  Google Scholar 

  • Okamura, N., & Yanai, K. (2017). Brain imaging: applications of tau PET imaging. Nature Reviews Neurology, 13, 197–198.

    Article  PubMed  Google Scholar 

  • Olson, M. I., & Shaw, C. M. (1969). Presenile dementia and Alzheimer’s disease in mongolism. Brain, 92(1), 147–156.

    Article  CAS  PubMed  Google Scholar 

  • Ono, M., Kitamura, S., Shimada, H., Sahara, N., Takuwa, H., Yoshiyama, Y., et al. (2017a). Development of novel tau PET tracers, [18F]AM-PBB3 and [18F]PM-PBB3. Human Amyloid Imaging, Conference abstract.

  • Ono, M., Sahara, N., Kumata, K., Ji, B., Ni, R., Koga, S., et al. (2017b). Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain, 140(3), 764–780.

  • Ossenkoppele, R., Schonhaut, D. R., Schöll, M., Lockhart, S. N., Ayakta, N., Baker, S. L., et al. (2016). Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain, 139(5), 1551–1567.

    Article  PubMed  PubMed Central  Google Scholar 

  • Price, J. C., Klunk, W. E., Lopresti, B. J., Lu, X., Hoge, J. A., Ziolko, S. K., Holt, D. P., et al. (2005). Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. Journal of Cerebral Blood Flow & Metabolism, 25, 1528–1547.

    Article  CAS  Google Scholar 

  • Saint-Aubert, L., Lemoine, L., Chiotis, K., Leuzy, A., Rodriguez-Vieitez, E., & Nordberg, A. (2017). Tau PET imaging: present and future directions. Molecular Neurodegeneration, 12, 19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salinas, C., Chiao, P., Purohit, A., Schmidt, K., Beaver, J., Sur, C., et al. (2017). Quantitative analysis and correlation with clinical endpoints of [18F]MK6240 targeting neurofibrillary tangles (NFTs) in healthy volunteers and subjects with Alzheimer’s disease. Human Amyloid Imaging, Conference abstract.

  • Sanabria-Bohorquez, S., Barret, O., Tamagnan, G., Alagille, D., Marik, J., Ayalon, G., et al. (2016). Evaluation of Tau burden in a cross-sectional cohort of Alzheimer’s disease subjects usign [18F]GTP1 (Genentech Tau Probe 1). Alzheimer’s & Dementia, 12(7), P1172.

    Article  Google Scholar 

  • Sanabria-Bohorquez, S., Bentsson, T., Barret, O., Tamagnan, G., Alagille, D., de Crespigny, A., et al. (2017). Kinetics of [18F]GTP1 (Genentech tau probe 1) in the basal ganglia of Alzheimer’s patients and healthy controls. Human Amyloid Imaging, Conference abstract.

  • Scholl, M., Lockhart, S., Schonhaut, D., O’Neil, J., Janabi, M., Ossenkoppele, R., et al. (2016). PET Imaging of tau deposition in the aging human brain. Neuron, 89, 971 – 82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz, A. J., Yu, P., Miller, B. B., Shcherbinin, S., Dickson, J., Navitsky, M., et al. (2016). Regional profiles of the candidate tau PET ligand18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain, 139(5), 1539–1550.

    Article  PubMed  Google Scholar 

  • Selkoe, D., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8, 595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shcherbinin, S., Schwarz, A. J., Joshi, A. D., Navitsky, M., Flitter, M., Shankle, W. M., Devous, M. D., & Mintun, M. A. (2016). Kinetics of the tau PET tracer 18F-AV-1451 (T807) in subjects with normal cognitive function, mild cognitive impairment, and Alzheimer disease. Journal Nuclear Medicine, 57(10), 1535–1542.

    Article  CAS  Google Scholar 

  • Shoghi-Jadid, K., Small, G. W., Agdeppa, E. D., Kepe, V., Ercoli, L. M., Siddarth, P., et al. (2002). Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with alzheimer disease. The American Journal of Geriatric Psychiatry, 10(1), 24–35.

  • Slifstein, M. (2008). Revisiting an Old Issue: the Discrepancy Between Tissue Ratio-Derived Binding Parameters and Kinetic Modeling-Derived Parameters After a Bolus of the Serotonin Transporter Radioligand 123I- ADAM. Journal of Nuclear Medicine, 49(2), 176–178.

    Article  PubMed  Google Scholar 

  • Smith, R., Puschmann, A., Scholl, M., Ohlsson, T., van Swieten, J., Honer, M., et al. (2016). 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain, 139(9), 2372–2379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperling, R., Mormino, E., & Johnson, K. (2014). The evolution of pre-clinical Alzheimer’s disease: implications for prevention trials. Neuron, 84(3), 608–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanov, V., Svedberg, M., Jia, Z., Krasikova, R., Lemoine, L., Okamura, N., et al. (2017). Development of [11C]/[3H]THK-5351 – a potential novel carbon-11 tau imaging PET radioligand. Nuclear Medicine and Biology, 46, 50–53.

    Article  CAS  PubMed  Google Scholar 

  • Sur, C., Struyk, A., Bennacef, I., Lohith, T., Salinas, C. A., Telan-Choing, F., et al. (2017). [18F]MK-6240, a novel neurofibrillary tangles PET tracer: evaluation in healthy subjects and Alzheimer’s disease patients. Human Amyloid Imaging, Conference abstract.

  • Vermeiren, C., Mercier, J., Viot, D., Mairet-Coello, G., Hannestad, J., Courade, J.-P., et al. (2015). T807 a reported selective tau tracer, binds with nanomolar affinity to monoamine oxidase A. Alzheimer’s & Dementia, 11(7), P283.

    Article  Google Scholar 

  • Villemagne, V., Rowe, C., Tamagnan, G., Fodero-Tavoletti, M., Okamura, N., Furumoto, S., et al. (2014). In vivo tau imaging with 18F- THK5105 and 18F-THK5117. Alzheimer’s & Dementia, 10(4), P241.

    Article  Google Scholar 

  • Villemagne, V. L., Fodero-Tavoletti, M. T., Masters, C. L., & Rowe, C. C. (2015). Tau imaging: early progress and future directions. The Lancet Neurology, 14(1), 114–124.

    Article  PubMed  Google Scholar 

  • Villemagne, V. L., Furumoto, S., Fodero-Tavoletti, M., Harada, R., Mulligan, R. S., Kudo, Y., et al. (2012). The challenges of tau imaging. Future Neurology, 7(4), 409–421.

    Article  CAS  Google Scholar 

  • Walji, A. M., Hostetler, E. D., Selnick, H., Zeng, Z., Miller, P., Bennacef, I., et al. (2016). Discovery of 6-(Fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin- 1-yl)isoquinolin-5-amine ([18F]-MK-6240): A Positron Emission Tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). Journal of Medicinal Chemistry, 59(10), 4778–4789.

    Article  CAS  PubMed  Google Scholar 

  • Wong, D. F., Borroni, E., Kuwabara, H., George, N., Rosenberg, P., Lyketsos, C., et al. (2015). First in-human PET study of 3 novel tau radiopharmaceuticals: [11C]RO6924963 [11C]RO6931643, and [18F]RO6958948. Alzheimer’s & Dementia, 11(7), P850–P851.

    Article  Google Scholar 

  • Wood, H. (2013). Alzheimer disease: [11C]PBB3— a new PET ligand that identifies tau pathology in the brains of patients with AD. Nature Reviews Neurology, 9(11), 599–599.

    Article  PubMed  Google Scholar 

  • Wooten, D., Guehl, N. J., Verwer, E. E., Shoup, T. M., Yokell, D. L., Zubcevik, N., et al. (2016). Pharmacokinetic evaluation of the tau PET radiotracer [18F]T807 ([18F]AV-1451) in human subjects. Journal of Nuclear Medicine, 58(3): 484–491.

  • Xia, C.-F., Areteaga, J., Chen, G., Gangagharmath, U., Gomez, L. F., Kasi, D., et al. (2013). [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimer’s & Dementia, 9(6), 666–676.

    Article  Google Scholar 

  • Yanai, K., Harada, R., & Okamura, N. (2016). Advances in the development of tau PET radiotracers and their clinical applications. International Journal of Neuropsychopharmacology, 19(Suppl 1), 9.

    Google Scholar 

Download references

Funding

This work was supported by NIH grants (R01AG046396, R01AG027435, R01DC014296 and P01AG036694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Lois.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

CL and IG declare no conflict of interest. KAJ reports grants from NIH, Fidelity Biosciences, Harvard Neurodiscovery Center, and from the Alzheimer’s Association; and consulting for Lilly/Avid, Piramal, Abbvie, Biogen, Janssen, Merck, Novartis, Genentech and GEHC. JCP reports NIH grant R01 AG050436; speaker honoraria from Yale University, Mount Sinai Hospital and Georgetown University; and is a member of NIH Center for Scientific Review Advisory Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lois, C., Gonzalez, I., Johnson, K.A. et al. PET imaging of tau protein targets: a methodology perspective. Brain Imaging and Behavior 13, 333–344 (2019). https://doi.org/10.1007/s11682-018-9847-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9847-7

Keywords

Navigation