Skip to main content
Log in

Cortical time course of object naming investigated by repetitive navigated transcranial magnetic stimulation

  • Brief Communication
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Human language organization models and language time course patterns are still predominantly derived from meta-analyses of numerous single publications, which only investigated scattered cortical regions. Moreover, there is not much literature available on the exact impact of repetitive navigated transcranial magnetic stimulation (rTMS) onset times on object naming. We, therefore, used a virtual lesion-based approach by mapping various cortical areas with rTMS to investigate the time course of object naming, and to specifically provide data on the pattern of rTMS language mapping results depending on different stimulation onset times. Ten healthy, right-handed subjects were enrolled, and rTMS in combination with an object-naming task was performed with different stimulation onset times (0 ms, 100 ms, 200 ms, 300 ms, 400 ms, and 500 ms). Subsequent to language mapping, all naming errors detected were systematically classified with respect to previous literature. The majority of errors was elicited within the opercular inferior frontal gyrus (opIFG) and ventral precentral gyrus (vPrG), and the spatial distribution of naming errors changed according to the time point of naming disruption by varying onset times. For instance, immediate rTMS onset led to a widespread cortical distribution of no responses, whereas performance and hesitation errors increased with higher stimulation onset times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

anG:

Angular gyrus

ANOVA:

Analysis of variance

ap:

Anterior-posterior

aSMG:

Anterior supramarginal gyrus

CI:

Confidence interval

CPS:

Cortical parcellation system

DCS:

Direct cortical stimulation

DT:

Display time

EEG:

Electroencephalography

EHI:

Edinburgh Handedness Inventory

fMRI:

Functional magnetic resonance imaging

IPI:

Inter-picture-interval

MEG:

Magnetoencephalography

mMTG:

Middle middle temporal gyrus

MRI:

Magnetic resonance imaging

mSTG:

Middle superior temporal gyrus

MTG:

Middle temporal gyrus

opIFG:

Opercular inferior frontal gyrus

pMFG:

Posterior middle frontal gyrus

pMTG:

Posterior middle temporal gyrus

PPV:

Positive predictive value

pSFG:

Posterior superior frontal gyrus

pSMG:

Posterior supramarginal gyrus

pSTG:

Posterior superior temporal gyrus

PTI:

Picture-to-trigger interval

RMT:

Resting motor threshold

RT:

Reaction time

rTMS:

Repetitive navigated transcranial magnetic stimulation

SD:

Standard deviation

TMS:

Transcranial magnetic stimulation

VAS:

Visual analogue scale

vPoG:

Ventral post-central gyrus

vPrG:

Ventral pre-central gyrus

References

  • Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet, 1, 1106–1107.

    Article  CAS  PubMed  Google Scholar 

  • Bestmann, S., & Feredoes, E. (2013). Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future. Annals of the New York Academy of Sciences, 1296, 11–30. doi:10.1111/nyas.12110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bookheimer, S. Y., Zeffiro, T. A., Blaxton, T. A., Gaillard, P. W., & Theodore, W. H. (2000). Activation of language cortex with automatic speech tasks. Neurology, 55, 1151–1157.

    Article  CAS  PubMed  Google Scholar 

  • Cappa, S. F., Sandrini, M., Rossini, P. M., Sosta, K., & Miniussi, C. (2002). The role of the left frontal lobe in action naming: rTMS evidence. Neurology, 59, 720–723.

    Article  CAS  PubMed  Google Scholar 

  • Corina, D. P., Gibson, E. K., Martin, R., Poliakov, A., Brinkley, J., & Ojemann, G. A. (2005). Dissociation of action and object naming: evidence from cortical stimulation mapping. Human Brain Mapping, 24, 1–10. doi:10.1002/hbm.20063.

    Article  PubMed  Google Scholar 

  • Corina, D. P., Loudermilk, B. C., Detwiler, L., Martin, R. F., Brinkley, J. F., & Ojemann, G. (2010). Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain and Language, 115, 101–112. doi:10.1016/j.bandl.2010.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Benedictis A, Duffau H (2011) Brain hodotopy: from esoteric concept to practical surgical applications. Neurosurgery, 68, 1709–1723; discussion 1723 doi:10.1227/NEU.0b013e3182124690.

  • DeLeon, J., et al. (2007). Neural regions essential for distinct cognitive processes underlying picture naming. Brain: A Journal of Neurology, 130, 1408–1422. doi:10.1093/brain/awm011.

    Article  Google Scholar 

  • du Boisgueheneuc, F., et al. (2006). Functions of the left superior frontal gyrus in humans: a lesion study. Brain, 129, 3315–3328. doi:10.1093/brain/awl244.

    Article  PubMed  Google Scholar 

  • Epstein, C. M., Lah, J. J., Meador, K., Weissman, J. D., Gaitan, L. E., & Dihenia, B. (1996). Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation. Neurology, 47, 1590–1593.

    Article  CAS  PubMed  Google Scholar 

  • Epstein, C. M., et al. (1999). Localization and characterization of speech arrest during transcranial magnetic stimulation. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 110, 1073–1079.

    Article  CAS  Google Scholar 

  • Hauck T et al. (2015) Task type affects location of language-positive cortical regions by repetitive navigated transcranial magnetic stimulation mapping. PloS One, 10, e0125298 doi:10.1371/journal.pone.0125298

  • Hernandez-Pavon JC, Makela N, Lehtinen H, Lioumis P, Makela JP (2014) Effects of navigated TMS on object and action naming. Frontiers in Human Neuroscience, 8, 660 doi:10.3389/fnhum.2014.00660.

  • Hulten A, Vihla M, Laine, M, Salmelin R (2009) Accessing newly learned names and meanings in the native language. Human Brain Mapping, 30, 976–989 doi:10.1002/hbm.20561.

  • Indefrey, P (2011) The spatial and temporal signatures of word production components: a critical update. Frontiers in Psychology, 2, 255 doi:10.3389/fpsyg.2011.00255.

  • Indefrey, P., & Levelt, W. J. (2004). The spatial and temporal signatures of word production components. Cognition, 92, 101–144. doi:10.1016/j.cognition.2002.06.001.

    Article  CAS  PubMed  Google Scholar 

  • Krieg, S. M., Shiban, E., Buchmann, N., Gempt, J., Foerschler, A., Meyer, B., & Ringel, F. (2012). Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. Journal of Neurosurgery, 116, 994–1001. doi:10.3171/2011.12.JNS111524.

    Article  PubMed  Google Scholar 

  • Krieg, S. M., et al. (2014). Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. NeuroImage, 100, 219–236. doi:10.1016/j.neuroimage.2014.06.016.

    Article  PubMed  Google Scholar 

  • Krieg, S. M., Sollmann, N., Tanigawa, N., Foerschler, A., Meyer, B., & Ringel, F. (2015). Cortical distribution of speech and language errors investigated by visual object naming and navigated transcranial magnetic stimulation. Brain Structure and Function. doi:10.1007/s00429-015-1042-7.

    Google Scholar 

  • Levelt, W. J., Praamstra, P., Meyer, A. S., Helenius, P., & Salmelin, R. (1998). An MEG study of picture naming. Journal of Cognitive Neuroscience, 10, 553–567.

    Article  CAS  PubMed  Google Scholar 

  • Lioumis, P., et al. (2012). A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. Journal of Neuroscience Methods, 204, 349–354. doi:10.1016/j.jneumeth.2011.11.003.

    Article  PubMed  Google Scholar 

  • Mottaghy, F. M., Sparing, R., & Topper, R. (2006). Enhancing picture naming with transcranial magnetic stimulation. Behavioural Neurology, 17, 177–186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada, K., Smith, K. R., Humphries, C., & Hickok, G. (2003). Word length modulates neural activity in auditory cortex during covert object naming. Neuroreport, 14, 2323–2326. doi:10.1097/01.wnr.0000094104.16607.51.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Leone, A., Gates, J. R., & Dhuna, A. (1991). Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology, 41, 697–702.

    Article  CAS  PubMed  Google Scholar 

  • Pattamadilok, C., Bulnes, L. C., Devlin, J. T., Bourguignon, M., Morais, J., Goldman, S., & Kolinsky, R. (2015). How early does the brain distinguish between regular words, irregular words, and pseudowords during the reading process? Evidence from neurochronometric TMS. Journal of Cognitive Neuroscience, 27, 1259–1274. doi:10.1162/jocn_a_00779.

    Article  PubMed  Google Scholar 

  • Picht, T., Mularski, S., Kuehn, B., Vajkoczy, P., Kombos, T., & Suess, O. (2009). Navigated transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery. Neurosurgery, 65, 93–98 discussion 98–99. doi:10.1227/01.NEU.0000348009.22750.59.

    Article  PubMed  Google Scholar 

  • Picht, T., et al. (2013). A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery, 72, 808–819. doi:10.1227/NEU.0b013e3182889e01.

    Article  PubMed  Google Scholar 

  • Pouratian N, Bookheimer SY (2010) The reliability of neuroanatomy as a predictor of eloquence: a review. Neurosurgical Focus, 28, E3 doi:10.3171/2009.11.FOCUS09239.

  • Price, CJ (2000) The anatomy of language: contributions from functional neuroimaging. Journal of Anatomy, 197, Pt 3:335–359.

  • Price, C. J. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 62–88. doi:10.1111/j.1749-6632.2010.05444.x.

    Article  PubMed  Google Scholar 

  • Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816–847. doi:10.1016/j.neuroimage.2012.04.062.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raymer, A. M., Foundas, A. L., Maher, L. M., Greenwald, M. L., Morris, M., Rothi, L. J., & Heilman, K. M. (1997). Cognitive neuropsychological analysis and neuroanatomic correlates in a case of acute anomia. Brain and Language, 58, 137–156. doi:10.1006/brln.1997.1786.

    Article  CAS  PubMed  Google Scholar 

  • Rogic, M., Deletis, V., & Fernandez-Conejero, I. (2014). Inducing transient language disruptions by mapping of Broca's area with modified patterned repetitive transcranial magnetic stimulation protocol. Journal of Neurosurgery, 120, 1033–1041. doi:10.3171/2013.11.JNS13952.

    Article  PubMed  Google Scholar 

  • Rosler, J., et al. (2014). Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 125, 526–536. doi:10.1016/j.clinph.2013.08.015.

    Article  CAS  Google Scholar 

  • Salmelin, R., Hari, R., Lounasmaa, O. V., & Sams, M. (1994). Dynamics of brain activation during picture naming. Nature, 368, 463–465. doi:10.1038/368463a0.

    Article  CAS  PubMed  Google Scholar 

  • Salmelin, R., Helenius, P., & Service, E. (2000). Neurophysiology of fluent and impaired reading: a magnetoencephalographic approach. Journal of Clinical Neurophysiology : Official Publication of the American Electroencephalographic Society, 17, 163–174.

    Article  CAS  Google Scholar 

  • Sanai, N., Mirzadeh, Z., & Berger, M. S. (2008). Functional outcome after language mapping for glioma resection. The New England Journal of Medicine, 358, 18–27. doi:10.1056/NEJMoa067819.

    Article  CAS  PubMed  Google Scholar 

  • Schuhmann, T., Schiller, N. O., Goebel, R., & Sack, A. T. (2009). The temporal characteristics of functional activation in Broca's area during overt picture naming. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 45, 1111–1116. doi:10.1016/j.cortex.2008.10.013.

    Article  PubMed  Google Scholar 

  • Schuhmann, T., Schiller, N. O., Goebel, R., & Sack, A. T. (2012). Speaking of which: dissecting the neurocognitive network of language production in picture naming. Cerebral Cortex, 22, 701–709. doi:10.1093/cercor/bhr155.

    Article  PubMed  Google Scholar 

  • Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology Human Learning and Memory, 6, 174–215.

    Article  CAS  PubMed  Google Scholar 

  • Sollmann N, Tanigawa N, Ringel F, Zimmer C, Meyer B, Krieg SM (2014) Language and its right-hemispheric distribution in healthy brains: an investigation by repetitive transcranial magnetic stimulation. NeuroImage, 102, Pt 2:776–788 doi:10.1016/j.neuroimage.2014.09.002.

  • Sollmann, N., Ille, S., Obermueller, T., Negwer, C., Ringel, F., Meyer, B., & Krieg, S. M. (2015). The impact of repetitive navigated transcranial magnetic stimulation coil positioning and stimulation parameters on human language function. European Journal of Medical Research, 20, 47. doi:10.1186/s40001-015-0138-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soros, P., Cornelissen, K., Laine, M., & Salmelin, R. (2003). Naming actions and objects: cortical dynamics in healthy adults and in an anomic patient with a dissociation in action/object naming. NeuroImage, 19, 1787–1801.

    Article  PubMed  Google Scholar 

  • Sparing, R., Mottaghy, F. M., Hungs, M., Brugmann, M., Foltys, H., Huber, W., & Topper, R. (2001). Repetitive transcranial magnetic stimulation effects on language function depend on the stimulation parameters. Journal of Clinical Neurophysiology : Official Publication of the American Electroencephalographic Society, 18, 326–330.

    Article  CAS  Google Scholar 

  • Tarapore, P. E., Findlay, A. M., Honma, S. M., Mizuiri, D., Houde, J. F., Berger, M. S., & Nagarajan, S. S. (2013). Language mapping with navigated repetitive TMS: proof of technique and validation. NeuroImage, 82, 260–272. doi:10.1016/j.neuroimage.2013.05.018.

    Article  PubMed  Google Scholar 

  • Vihla, M., Laine, M., & Salmelin, R. (2006). Cortical dynamics of visual/semantic vs. phonological analysis in picture confrontation. NeuroImage, 33, 732–738. doi:10.1016/j.neuroimage.2006.06.040.

    Article  PubMed  Google Scholar 

  • Wheat, K. L., Cornelissen, P. L., Sack, A. T., Schuhmann, T., Goebel, R., & Blomert, L. (2013). Charting the functional relevance of Broca's area for visual word recognition and picture naming in Dutch using fMRI-guided TMS. Brain and Language, 125, 223–230. doi:10.1016/j.bandl.2012.04.016.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges the support of the Graduate School’s Faculty Graduate Center of our university. Furthermore, we would like to thank Mrs. Noriko Tanigawa for her support during analysis of video data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro M. Krieg.

Ethics declarations

Funding

The study was primarily financed by institutional grants from the Department of Neurosurgery and the Section of Neuroradiology.

Conflict of interest

FR and SK are consultants for BrainLab AG (Feldkirchen, Germany). SK is consultant for Nexstim Oy (Helsinki, Finland). The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Ethics Committee Registration Number: 222/14

Electronic supplementary material

Supplementary Figure 1

All errors. This figure shows the region-specific number of all errors, the number of stimulations, and the corresponding error rates (in %) for rTMS applied with a PTI of 0 ms (a), 100 ms (b), 200 ms (c), 300 ms (d), 400 ms (e), and 500 ms (f). (GIF 156 kb)

High Resolution Image (TIFF 4644 kb)

Supplementary Figure 2

All errors without hesitations. This graph provides information about the region-specific number of all errors except hesitations, the number of stimulations, and the corresponding error rates (in %) for rTMS applied with a PTI of 0 ms (a), 100 ms (b), 200 ms (c), 300 ms (d), 400 ms (e), and 500 ms (f). (GIF 155 kb)

High Resolution Image (TIFF 4432 kb)

Supplementary Figure 3

No responses. The number of no responses, the number of stimulations, and the corresponding no-response error rates (in %) for rTMS applied with a PTI of 0 ms (a), 100 ms (b), 200 ms (c), 300 ms (d), 400 ms (e), and 500 ms (f) are illustrated in this figure. (GIF 151 kb)

High Resolution Image (TIFF 4387 kb)

Supplementary Figure 4

Performance errors. This scheme visualizes the number of performance errors, the number of stimulations, and the corresponding performance error rates (in %) per region for rTMS applied with a PTI of 0 ms (a), 100 ms (b), 200 ms (c), 300 ms (d), 400 ms (e), and 500 ms (f). (GIF 149 kb)

High Resolution Image (TIFF 4305 kb)

Supplementary Figure 5

Hesitations. This graph provides information about the region-specific number of hesitations, the number of stimulations, and the corresponding hesitation error rates (in %) for rTMS applied with a PTI of 0 ms (a), 100 ms (b), 200 ms (c), 300 ms (d), 400 ms (e), and 500 ms (f). (GIF 156 kb)

High Resolution Image (TIFF 4495 kb)

Supplementary Table 1

Distribution of naming errors. Summary of naming errors induced by rTMS per region and picture-to-trigger interval (PTI). In detail, the table shows the total number of trials (which equals the number of rTMS trains), the total number of errors, and the corresponding error rates and ratios for each error type. The category “other” includes neologisms, semantic errors, and phonological errors, which only occurred infrequently. (DOC 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sollmann, N., Ille, S., Negwer, C. et al. Cortical time course of object naming investigated by repetitive navigated transcranial magnetic stimulation. Brain Imaging and Behavior 11, 1192–1206 (2017). https://doi.org/10.1007/s11682-016-9574-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9574-x

Keywords

Navigation