Skip to main content
Log in

Non redundant functional brain connectivity in schizophrenia

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Schizophrenia is considered a disorder of abnormal brain connectivity. Although whole brain maps of averaged bivariate voxel correlations have been successfully applied to study connectivity abnormalities in schizophrenia these maps do not adequately explore the multivariate nature of brain connectivity. Here we adapt a novel method for high-dimensional regression (supervised principal component regression) to estimate brain maps of multivariate non redundant connectivity (NRC) from resting functional Magnetic Resonance Imaging (fMRI) data of 116 patients with schizophrenia and 122 matched controls. Disorder related differences in NRC involved caudate hyper-connectivity and hypo-connectivity of several cortical areas such as the dorsal cingulate, the cuneus and the right postcentral cortex. These abnormalities were coupled with abnormalities in the amplitude of signal fluctuations and, to a minor extent, with differences in the dimensionality of connectivity patterns as quantified by the number of supervised principal components. Second level seed correlation analyses linked the observed abnormalities to an additional set of brain regions relevant to schizophrenia such as the thalamus and the temporal cortex. The non redundant connectivity maps proposed here are a new tool that will complement the information provided by other already available voxel based whole brain connectivity measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alderson-Day, B., McCarthy-Jones, S., & Fernyhough, C. (2015). Hearing voices in the resting brain: a review of intrinsic functional connectivity research on auditory verbal hallucinations. Neuroscience & Biobehavioral Reviews, 55, 78–87. doi:10.1016/j.neubiorev.2015.04.016.

    Article  Google Scholar 

  • Anticevic, A., Brumbaugh, M. S., Winkler, A. M., Lombardo, L. E., Barrett, J., Corlett, P. R., et al. (2013). Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history. Biological Psychiatry, 73(6), 565–573. doi:10.1016/j.biopsych.2012.07.031.

    Article  PubMed  Google Scholar 

  • Anticevic, A., Cole, M. W., Repovs, G., Murray, J. D., Brumbaugh, M. S., Winkler, A. M., et al. (2014a). Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cerebral Cortex, 24(12), 3116–3130. doi:10.1093/cercor/bht165.

    Article  PubMed  Google Scholar 

  • Anticevic, A., Hu, S., Zhang, S., Savic, A., Billingslea, E., Wasylink, S., et al. (2014b). Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biological Psychiatry, 75(8), 595–605. doi:10.1016/j.biopsych.2013.10.021.

    Article  PubMed  Google Scholar 

  • Anticevic, A., Hu, X., Xiao, Y., Hu, J., Li, F., Bi, F., et al. (2015). Early-course unmedicated schizophrenia patients exhibit elevated prefrontal connectivity associated with longitudinal change. Journal of Neuroscience, 35(1), 267–286. doi:10.1523/JNEUROSCI.2310-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bair, E., Hastie, T., Debashis, P., & Tibshirani, R. (2006). Prediction by supervised principal components. Journal of the American Statistical Association, 101, 119–137.

    Article  CAS  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29(6), 1860–1873. doi:10.1523/JNEUROSCI.5062-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. doi:10.1038/nrn2575.

    Article  CAS  PubMed  Google Scholar 

  • Cole, M. W., Pathak, S., & Schneider, W. (2010). Identifying the brain’s most globally connected regions. NeuroImage, 49(4), 3132–3148. doi:10.1016/j.neuroimage.2009.11.001.

    Article  PubMed  Google Scholar 

  • Cole, M. W., Anticevic, A., Repovs, G., & Barch, D. (2011). Variable global dysconnectivity and individual differences in schizophrenia. Biological Psychiatry, 70(1), 43–50. doi:10.1016/j.biopsych.2011.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Di, X., Kim, E. H., Huang, C. C., Tsai, S. J., Lin, C. P., & Biswal, B. B. (2013). The influence of the amplitude of low-frequency fluctuations on resting-state functional connectivity. Frontiers in Human Neuroscience, 7, 118. doi:10.3389/fnhum.2013.00118.

    PubMed  PubMed Central  Google Scholar 

  • Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62(4), 2296–2314. doi:10.1016/j.neuroimage.2011.12.090.

    Article  PubMed  Google Scholar 

  • Gottlich, M., Kramer, U. M., Kordon, A., Hohagen, F., & Zurowski, B. (2015). Resting-state connectivity of the amygdala predicts response to cognitive behavioral therapy in obsessive compulsive disorder. Biological Psychology, 111, 100–109. doi:10.1016/j.biopsycho.2015.09.004.

    Article  PubMed  Google Scholar 

  • Guo, W. B., Liu, F., Xue, Z. M., Xu, X. J., Wu, R. R., Ma, C. Q., et al. (2012). Alterations of the amplitude of low-frequency fluctuations in treatment-resistant and treatment-response depression: a resting-state fMRI study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 37(1), 153–160. doi:10.1016/j.pnpbp.2012.01.011.

    Article  Google Scholar 

  • Hastie, T., Debashis, P., & Friedman, J. K. (2009). The elements of statistical learning. Data mining, inference and prediction (2nd ed.). New York: Springer.

    Google Scholar 

  • Hoptman, M. J., Zuo, X. N., Butler, P. D., Javitt, D. C., D’Angelo, D., Mauro, C. J., et al. (2010). Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophrenia Research, 117(1), 13–20. doi:10.1016/j.schres.2009.09.030.

    Article  PubMed  Google Scholar 

  • Hou, J., Wu, W., Lin, Y., Wang, J., Zhou, D., Guo, J., et al. (2012). Localization of cerebral functional deficits in patients with obsessive-compulsive disorder: a resting-state fMRI study. Journal of Affective Disorders, 138(3), 313–321. doi:10.1016/j.jad.2012.01.022.

    Article  PubMed  Google Scholar 

  • Hou, J. M., Zhao, M., Zhang, W., Song, L. H., Wu, W. J., Wang, J., et al. (2014). Resting-state functional connectivity abnormalities in patients with obsessive-compulsive disorder and their healthy first-degree relatives. Journal of Psychiatry & Neuroscience, 39(5), 304–311.

    Article  Google Scholar 

  • Jo, H. J., Gotts, S. J., Reynolds, R. C., Bandettini, P. A., Martin, A., Cox, R. W., et al. (2013). Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. Journal of Applied Mathematics. doi:10.1155/2013/935154.

    PubMed  PubMed Central  Google Scholar 

  • Kaufmann, T., Skatun, K. C., Alnaes, D., Doan, N. T., Duff, E. P., Tonnesen, S., et al. (2015). Disintegration of sensorimotor brain networks in Schizophrenia. Schizophrenia Bulletin, 41(6), 1326–1335. doi:10.1093/schbul/sbv060.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276.

    Article  CAS  PubMed  Google Scholar 

  • Liddle, P. F. (1987). The symptoms of chronic schizophrenia. a re-examination of the positive–negative dichotomy. British Journal of Psychiatry, 151, 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Modinos, G., Costafreda, S. G., van Tol, M. J., McGuire, P. K., Aleman, A., & Allen, P. (2013). Neuroanatomy of auditory verbal hallucinations in schizophrenia: a quantitative meta-analysis of voxel-based morphometry studies. Cortex, 49(4), 1046–1055. doi:10.1016/j.cortex.2012.01.009.

    Article  PubMed  Google Scholar 

  • Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: where are we now? Neuroscience & Biobehavioral Reviews, 35(5), 1110–1124. doi:10.1016/j.neubiorev.2010.11.004.

    Article  Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. doi:10.1016/j.neuroimage.2011.10.018.

    Article  PubMed  Google Scholar 

  • R_Development_Core_Team. (2011). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Raichle, M. E. (2011). The restless brain. Brain Connectivity, 1(1), 3–12. doi:10.1089/brain.2011.0019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubinov, M., & Bullmore, E. (2013). Schizophrenia and abnormal brain network hubs. Dialogues in Clinical Neuroscience, 15(3), 339–349.

    PubMed  PubMed Central  Google Scholar 

  • Salvador, R., Suckling, J., Schwarzbauer, C., & Bullmore, E. (2005). Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 937–946. doi:10.1098/rstb.2005.1645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvador, R., Vega, D., Pascual, J. C., Marco, J., Canales-Rodriguez, E. J., Aguilar, S., et al. (2014). Converging medial frontal resting state and diffusion-based abnormalities in borderline personality disorder. Biological Psychiatry. doi:10.1016/j.biopsych.2014.08.026.

    Google Scholar 

  • Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., et al. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. NeuroImage, 60(1), 623–632. doi:10.1016/j.neuroimage.2011.12.063.

    Article  PubMed  PubMed Central  Google Scholar 

  • Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E., et al. (2013). An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage, 64, 240–256. doi:10.1016/j.neuroimage.2012.08.052.

    Article  PubMed  Google Scholar 

  • Sepulcre, J., Liu, H., Talukdar, T., Martincorena, I., Yeo, B. T., & Buckner, R. L. (2010). The organization of local and distant functional connectivity in the human brain. PLoS Computational Biology, 6(6), e1000808. doi:10.1371/journal.pcbi.1000808.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, Y., Yao, J., Jiang, X., Zhang, L., Xu, L., Feng, R., et al. (2015). Sub-hubs of baseline functional brain networks are related to early improvement following two-week pharmacological therapy for major depressive disorder. Human Brain Mapping, 36(8), 2915–2927. doi:10.1002/hbm.22817.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–219. doi:10.1016/j.neuroimage.2004.07.051.

    Article  PubMed  Google Scholar 

  • Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35(3), 509–527. doi:10.1093/schbul/sbn176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steriade, M., & Llinas, R. R. (1988). The functional states of the thalamus and the associated neuronal interplay. Physiological Reviews, 68(3), 649–742.

    CAS  PubMed  Google Scholar 

  • Turner, J. A., Damaraju, E., van Erp, T. G., Mathalon, D. H., Ford, J. M., Voyvodic, J., et al. (2013). A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Frontiers in Neuroscience, 7, 137. doi:10.3389/fnins.2013.00137.

    PubMed  PubMed Central  Google Scholar 

  • Wechsler, D. (1997). Wechsler memory scale (3rd ed.). San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wilson, B. A. N., & Burgess, P. (1996). Behavioural assessment of the Dysexecutive Syndrome(BADS). London: Harcourt Assessment.

    Google Scholar 

  • Woodward, N. D., Karbasforoushan, H., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. The American Journal of Psychiatry, 169(10), 1092–1099. doi:10.1176/appi.ajp.2012.12010056.

    Article  PubMed  Google Scholar 

  • Xu, Y., Zhuo, C., Qin, W., Zhu, J., & Yu, C. (2015). Altered spontaneous brain activity in schizophrenia: a meta-analysis and a large-sample study. Biomedical Research International, 2015, 204628. doi:10.1155/2015/204628.

    Google Scholar 

  • Yu, R., Chien, Y. L., Wang, H. L., Liu, C. M., Liu, C. C., Hwang, T. J., et al. (2014). Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia. Human Brain Mapping, 35(2), 627–637. doi:10.1002/hbm.22203.

    Article  PubMed  Google Scholar 

  • Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev, 29(2), 83–91. doi:10.1016/j.braindev.2006.07.002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Catalonian Government (2014SGR1573), several grants from the Plan Nacional de I + D + i and co-funded by the Instituto de Salud Carlos III-Subdirección General de Evaluación y Fomento de la Investigación and the European Regional Development Fund (FEDER): Miguel Servet Research Contracts (CP10/00596 to EP-C, CP13/00018 to RS and CP14/00041 to JR) and Research Project Grants (PI14/00292, PI14/01691, PI14/01148 and PI14/01151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Salvador.

Ethics declarations

Conflict of interest

Author Raymond Salvador, Author Ramón Landín-Romero, Author Maria Anguera, Author Erick J. Canales-Rodríguez, Author Joaquim Raduà, Author Amalia Guerrero-Pedraza, Author Salvador Sarró, Author Teresa Maristany, Author Peter J. McKenna and Author Edith Pomarol-Clotet declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 115 kb)

Appendix 1 Development of a computationally efficient formula to calculate NRC values

Appendix 1 Development of a computationally efficient formula to calculate NRC values

Equation 2 of the main text involves a strong reduction in the dimensionality of the independent variable set from p to m variables (with m < N) making the calculation of a multiple correlation feasible. Still, the computational burden of fitting Eq. 2 for each one of the grey matter voxels is very high. Luckily, as shown below Eq. 2 can be estimated without the need to obtain the PCs or their correlations with Y at each single voxel.

We start with the definition of

$$ PC={L}^T\;X $$
(A1)

where L T is the matrix of m orthogonal and normalized eigenvectors related to the m components (given in rows). Each one of the components PC i has a different variance given by its respective eigenvalue Λ i (and Λ is the diagonal covariance matrix of PC).

Now, due to the scale invariance of correlations, we can consider an alternative formula for Eq. 2 based on normalized components \( NPC=\left\{P{C}_1/\sqrt{\varLambda_1},P{C}_2/\sqrt{\varLambda_2},\dots, P{C}_m/\sqrt{\varLambda_m}\right\} \)

$$ {R}^2=\mathrm{c}\mathrm{o}\mathrm{r}\;{\left(Y,NPC\right)}^T\;\mathrm{c}\mathrm{o}\mathrm{r}\;\left(Y,NPC\right) $$
(A2)

and since Y and NPC have unit variance

$$ \mathrm{c}\mathrm{o}\mathrm{r}\;\left(Y,PC\right)=\mathrm{c}\mathrm{o}\mathrm{r}\;\left(Y,NPC\right)=\mathrm{c}\mathrm{o}\mathrm{v}\;\left(Y,NPC\right)=\sqrt{\varLambda^{-1}}\;\mathrm{c}\mathrm{o}\mathrm{v}\;\left(Y,PC\right) $$

which, by considering Eq. A1, becomes \( \mathrm{c}\mathrm{o}\mathrm{r}\;\left(Y,PC\right)=\sqrt{\varLambda^{-1}}\;\mathrm{c}\mathrm{o}\mathrm{v}\;\left(Y,{L}^TX\right)=\sqrt{\varLambda^{-1}}\;{L}^T\mathrm{c}\mathrm{o}\mathrm{r}\;\left(Y,X\right) \).

Finally, Eq. 2 (main text) may be reduced to

$$ {R}^2={\left[{L}^T\mathrm{c}\mathrm{o}\mathrm{r}\;\left(Y,X\right)\right]}^T{\varLambda}^{-1}{L}^T\mathrm{c}\mathrm{o}\mathrm{r}\;\left(Y,X\right) $$

And since Λ − 1 is diagonal, it may be further simplified to a sum

$$ {R}^2={\displaystyle \sum_{i=1}^m\frac{1}{\varLambda_{ii}}{\left[{L}_i^T\mathrm{c}\mathrm{o}\mathrm{r}\;\left(Y,X\right)\right]}^T{L}_i^T\mathrm{c}\mathrm{o}\mathrm{r}\;\left(Y,X\right)} $$
(A3)

in which every term is the squared correlation between each component and Y.

In summary, since both eigenvectors (L) and eigenvalues (Λ) are obtained from the diagonalization of correlation matrices, once the matrix containing correlations between each pair of voxels is initially calculated there is no need to operate with X anymore.

Finally, computational time can be further reduced by implementing sub-sampling strategies, which are acceptable considering the high levels of spatial autocorrelation in fMRI images. In this study a sub-sample of randomly chosen voxels was used for the computation of NRC at each voxel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvador, R., Landin-Romero, R., Anguera, M. et al. Non redundant functional brain connectivity in schizophrenia. Brain Imaging and Behavior 11, 552–564 (2017). https://doi.org/10.1007/s11682-016-9535-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9535-4

Keywords

Navigation