Skip to main content
Log in

Moderate and late preterm infants exhibit widespread brain white matter microstructure alterations at term-equivalent age relative to term-born controls

Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Despite the many studies documenting cerebral white matter microstructural alterations associated with very preterm birth (<32 weeks’ gestation), there is a dearth of similar research in moderate and late preterm infants (born 32–36 weeks’ gestation), who experience higher rates of neurodevelopmental delays than infants born at term (≥37 weeks’ gestation). We therefore aimed to determine whether whole brain white matter microstructure differs between moderate and late preterm infants and term-born controls at term-equivalent age, as well as to identify potential perinatal risk factors for white matter microstructural alterations in moderate and late preterm infants. Whole brain white matter microstructure was studied in 193 moderate and late preterm infants and 83 controls at term-equivalent age by performing Tract-Based Spatial Statistics analysis of diffusion tensor imaging data. Moderate and late preterm infants had lower fractional anisotropy and higher mean, axial and radial diffusivities compared with controls in nearly 70 % of the brain’s major white matter fiber tracts. In the moderate and late preterm group, being born small for gestational age and male sex were associated with lower fractional anisotropy, largely within the optic radiation, corpus callosum and corona radiata. In conclusion, moderate and late preterm infants exhibit widespread brain white matter microstructural alterations compared with controls at term-equivalent age, in patterns consistent with delayed or disrupted white matter microstructural development. These findings may underpin some of the neurodevelopmental delays observed in moderate and late preterm children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Bach M., Laun F. B., Leemans A., Tax C. M., Biessels G. J., Stieltjes B., et al. (2014). Methodological considerations on tract-based spatial statistics (TBSS). NeuroImage. doi:10.1016/j.neuroimage.2014.06.021.

    PubMed Central  Google Scholar 

  • Ball G., Counsell S. J., Anjari M., Merchant N., Arichi T., Doria V., et al. (2010). An optimised tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease. NeuroImage, 53(1), 94–102.

    Article  PubMed  Google Scholar 

  • Blencowe H., Cousens S., Oestergaard M. Z., Chou D., Moller A. B., Narwal R., et al. (2012). National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet, 379(9832), 2162–2172.

    Article  PubMed  Google Scholar 

  • Budde M. D., Xie M., Cross A. H., & Song S. K. (2009). Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. The Journal of Neuroscience, 29(9), 2805–2813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong J. L., & Doyle L. W. (2012). Increasing rates of prematurity and epidemiology of late preterm birth. Journal of Paediatrics and Child Health, 48(9), 784–788.

    Article  PubMed  Google Scholar 

  • Constable R. T., Ment L. R., Vohr B. R., Kesler S. R., Fulbright R. K., Lacadie C., et al. (2008). Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: an investigation of group and gender effects. Pediatrics, 121(2), 306–316.

    Article  PubMed  Google Scholar 

  • De Bie H. M., Oostrom K. J., Boersma M., Veltman D. J., Barkhof F., Delemarre-van de Waal H. A., et al. (2011). Global and regional differences in brain anatomy of young children born small for gestational age. PloS One, 6(9), e24116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edden R. A., & Jones D. K. (2011). Spatial and orientational heterogeneity in the statistical sensitivity of skeleton-based analyses of diffusion tensor MR imaging data. Journal of Neuroscience Methods, 201(1), 213–219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffith J. L., Shimony J. S., Cousins S. A., Rees S. E., McCurnin D. C., Inder T. E., et al. (2012). MR imaging correlates of white-matter pathology in a preterm baboon model. Pediatric Research, 71(2), 185–191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haynes R. L., Borenstein N. S., Desilva T. M., Folkerth R. D., Liu L. G., Volpe J. J., et al. (2005). Axonal development in the cerebral white matter of the human fetus and infant. The Journal of Comparative Neurology, 484(2), 156–167.

    Article  PubMed  Google Scholar 

  • Haynes R. L., Sleeper L. A., Volpe J. J., & Kinney H. C. (2013). Neuropathologic studies of the encephalopathy of prematurity in the late preterm infant. Clinics in Perinatology, 40(4), 707–722.

    Article  PubMed  Google Scholar 

  • Heemskerk A. M., Leemans A., Plaisier A., Pieterman K., Lequin M. H., & Dudink J. (2013). Acquisition guidelines and quality assessment tools for analyzing neonatal diffusion tensor MRI data. American Journal of Neuroradiology, 34(8), 1496–1505.

    Article  CAS  PubMed  Google Scholar 

  • Huppi P. S., & Dubois J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11(6), 489–497.

    Article  PubMed  Google Scholar 

  • Huppi P. S., Warfield S., Kikinis R., Barnes P. D., Zientara G. P., Jolesz F. A., et al. (1998). Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Annals of Neurology, 43(2), 224–235.

    Article  CAS  PubMed  Google Scholar 

  • Jones D. K., & Leemans A. (2011). Diffusion tensor imaging. Methods in Molecular Biology, 711, 127–144.

    Article  CAS  PubMed  Google Scholar 

  • Jones D. K., Knosche T. R., & Turner R. (2013). White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. NeuroImage, 73, 239–254.

    Article  PubMed  Google Scholar 

  • Kinney H. C. (2006). The near-term (late preterm) human brain and risk for periventricular leukomalacia: a review. Seminars in Perinatology, 30(2), 81–88.

    Article  PubMed  Google Scholar 

  • Kugelman A., & Colin A. A. (2013). Late preterm infants: near term but still in a critical developmental time period. Pediatrics, 132(4), 741–751.

    Article  PubMed  Google Scholar 

  • Kumar R., Nguyen H. D., Macey P. M., Woo M. A., & Harper R. M. (2012). Regional brain axial and radial diffusivity changes during development. Journal of Neuroscience Research, 90(2), 346–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leemans A., & Jones D. K. (2009). The B-matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine, 61(6), 1336–1349.

    Article  PubMed  Google Scholar 

  • Leemans, A., Jeurissen, B., Sijbers, J., & Jones, D. K. (2009). ExploreDTI: A graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In 17th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Hawaii, USA, 18–24 April 2009 (pp. 3537).

    Google Scholar 

  • Lepomaki V., Matomaki J., Lapinleimu H., Lehtonen L., Haataja L., Komu M., et al. (2013). Effect of antenatal growth on brain white matter maturation in preterm infants at term using tract-based spatial statistics. Pediatric Radiology, 43(1), 80–85.

    Article  PubMed  Google Scholar 

  • Liu Y., Metens T., Absil J., De Maertelaer V., Baleriaux D., David P., et al. (2011). Gender differences in language and motor-related fibers in a population of healthy preterm neonates at term-equivalent age: a diffusion tensor and probabilistic tractography study. American Journal of Neuroradiology, 32(11), 2011–2016.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P., & McKinstry R. C. (2006). Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clinics of North America, 16(1), 19–vii43.

    Article  PubMed  Google Scholar 

  • Munakata S., Okada T., Okahashi A., Yoshikawa K., Usukura Y., Makimoto M., et al. (2013). Gray matter volumetric MRI differences late-preterm and term infants. Brain and Development, 35(1), 10–16.

    Article  PubMed  Google Scholar 

  • Oishi K., Mori S., Donohue P. K., Ernst T., Anderson L., Buchthal S., et al. (2011). Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. NeuroImage, 56(1), 8–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandit A. S., Ball G., Edwards A. D., & Counsell S. J. (2013). Diffusion magnetic resonance imaging in preterm brain injury. Neuroradiology, 55(Suppl 2), 65–95.

    Article  PubMed  Google Scholar 

  • Pannek K., Scheck S. M., Colditz P. B., Boyd R. N., & Rose S. E. (2014). Magnetic resonance diffusion tractography of the preterm infant brain: a systematic review. Developmental Medicine and Child Neurology, 56(2), 113–124.

    Article  PubMed  Google Scholar 

  • Raju T. N. (2013). Moderately preterm, late preterm and early term infants: research needs. Clinics in Perinatology, 40(4), 791–797.

    Article  PubMed  Google Scholar 

  • Rogers C. E., Barch D. M., Sylvester C. M., Pagliaccio D., Harms M. P., Botteron K. N., et al. (2014). Altered Gray Matter Volume and School Age Anxiety in Children Born Late Preterm. The Journal of Pediatrics. doi:10.1016/j.jpeds.2014.06.063.

    Google Scholar 

  • Rose J., Butler E. E., Lamont L. E., Barnes P. D., Atlas S. W., & Stevenson D. K. (2009). Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Developmental Medicine and Child Neurology, 51(7), 526–535.

    Article  PubMed  Google Scholar 

  • Schwarz C. G., Reid R. I., Gunter J. L., Senjem M. L., Przybelski S. A., Zuk S. M., et al. (2014). Improved DTI registration allows voxel-based analysis that outperforms tract-based spatial statistics. NeuroImage, 94, 65–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith S. M., & Nichols T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 83–98.

    Article  PubMed  Google Scholar 

  • Smith S. M., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T. E., Mackay C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505.

    Article  PubMed  Google Scholar 

  • Song S. K., Sun S. W., Ramsbottom M. J., Chang C., Russell J., & Cross A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage, 17(3), 1429–1436.

    Article  PubMed  Google Scholar 

  • Takahashi E., Hayashi E., Schmahmann J. D., & Grant P. E. (2014). Development of cerebellar connectivity in human fetal brains revealed by high angular resolution diffusion tractography. NeuroImage, 96, 326–333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hecke W., Leemans A., De Backer S., Jeurissen B., Parizel P. M., & Sijbers J. (2010). Comparing isotropic and anisotropic smoothing for voxel-based DTI analyses: A simulation study. Human Brain Mapping, 31(1), 98–114.

    PubMed  Google Scholar 

  • Veraart J., Sijbers J., Sunaert S., Leemans A., & Jeurissen B. (2013). Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. NeuroImage, 81, 335–346.

    Article  PubMed  Google Scholar 

  • Vohr B. (2013). Long-term outcomes of moderately preterm, late preterm, and early term infants. Clinics in Perinatology, 40(4), 739–751.

    Article  PubMed  Google Scholar 

  • Volpe J. J. (2009). Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurology, 8(1), 110–124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh J. M., Doyle L. W., Anderson P. J., Lee K. J., & Cheong J. L. (2014). Moderate and late preterm birth: effect on brain size and maturation at term-equivalent age. Radiology. doi:10.1148/radiol.14132410.

    Google Scholar 

  • Winkler A. M., Ridgway G. R., Webster M. A., Smith S. M., & Nichols T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381–397.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank our research coordinator Emma McInnes, our research nurses, and the families for their willingness to participate in this study. We also acknowledge the expertise and efforts of the MRI technologists at the Melbourne Children’s MRI Centre, Royal Children’s Hospital, Melbourne.

This study was supported by the Australian National Health and Medical Research Council (Project Grant ID 1028822; Centre of Clinical Research Excellence Grant ID 546519; Centre of Research Excellence Grant ID 1060733; Senior Research Fellowship ID 1081288 to P.J.A.; Early Career Fellowship ID 1053787 to J.L.Y.C., ID 1053767 to A.J.S., ID 1012236 to D.K.T.), Murdoch Childrens Research Institute, Clinical Sciences Theme Grant, the Victorian Government Operational Infrastructure Support Program, and The Royal Children’s Hospital Foundation. The research of A.L. is supported by VIDI Grant 639.072.411 from The Netherlands Organisation for Scientific Research (NWO).

Conflict of interest

Claire E Kelly, Jeanie LY Cheong, Lillian Gabra Fam, Alexander Leemans, Marc L Seal, Lex W Doyle, Peter J Anderson, Alicia J Spittle and Deanne K Thompson declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire E. Kelly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, C.E., Cheong, J.L.Y., Gabra Fam, L. et al. Moderate and late preterm infants exhibit widespread brain white matter microstructure alterations at term-equivalent age relative to term-born controls. Brain Imaging and Behavior 10, 41–49 (2016). https://doi.org/10.1007/s11682-015-9361-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9361-0

Keywords

Navigation