Skip to main content

Advertisement

Log in

The Alzheimer’s Disease Assessment Scale-Cognitive-Plus (ADAS-Cog-Plus): an expansion of the ADAS-Cog to improve responsiveness in MCI

  • ADNI: FRIDAY HARBOR 2011 WORKSHOP SPECIAL ISSUE
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Background

The Alzheimer’s Disease Assessment Scale cognitive subscale (ADAS-Cog) is widely used in AD, but may be less responsive to change when used in people with mild cognitive impairment (MCI).

Methods

Participants from the Alzheimer’s Disease Neuroimaging Initiative were administered a neuropsychological battery and 1.5 T MRI scans over 2–3 years. Informants were queried regarding functional impairments. Some participants had lumbar punctures to obtain cerebrospinal fluid (CSF). We added executive functioning (EF) and functional ability (FA) items to the ADAS-Cog to generate candidate augmented measures. We calibrated these candidates using baseline data (n = 811) and selected the best candidate that added EF items alone and that added EF and FA items. We selected candidates based on their responsiveness over three years in a training sample of participants with MCI (n = 160). We compared traditional ADAS-Cog scores with the two candidates based on their responsiveness in a validation sample of participants with MCI (n = 234), ability to predict conversion to dementia (n = 394), strength of association with baseline MRI (n = 394) and CSF biomarkers (n = 193).

Results

The selected EF candidate added category fluency (ADAS Plus EF), and the selected EF and FA candidate added category fluency, Digit Symbol, Trail Making, and five items from the Functional Assessment Questionnaire (ADAS Plus EF&FA). The ADAS Plus EF& FA performed as well as or better than traditional ADAS-Cog scores.

Conclusion

Adding EF and FA items to the ADAS-Cog may improve responsiveness among people with MCI without impairing validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker, F. B., & Kim, S.-H. (2004). Item response theory: Parameter estimation techniques (2nd ed.). New York: CRC Press.

    Google Scholar 

  • Beaton, D. E., Bombardier, C., Katz, J. N., & Wright, J. G. (2001). A taxonomy for responsiveness. Journal of Clinical Epidemiology, 54, 1204–1217.

    Article  PubMed  CAS  Google Scholar 

  • Benge, J. F., Balsis, S., Geraci, L., Massman, P. J., & Doody, R. S. (2009). How well do the ADAS-Cog and its subscales measure cognitive dysfunction in Alzheimer’s disease? Dementia and Geriatric Cognitive Disorders, 28(1), 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Birks, J., Grimley Evans, J., Iakovidou, V., Tsolaki, M., & Holt, F. E. (2009). Rivastigmine for Alzheimer’s disease. Cochrane Database of Systematic Reviews, 15(2).

  • Brandt, J., Aretouli, E., Neijstrom, E., Samek, J., Manning, K., Albert, M. S., et al. (2009). Selectivity of executive function deficits in mild cognitive impairment. Neuropsychology, 23(5), 607–618.

    Article  PubMed  Google Scholar 

  • Brown, P. J., Devanand, D. P., Liu, X., Caccappolo, E., & for the Alzheimer’s Disease Neuroimaging Initiative. (2011). Functional impairment in elderly patients with mild cognitive impairment and mild Alzheimer disease. Archives of General Psychiatry, 68(6), 617–626.

    Article  PubMed  Google Scholar 

  • Butt, Z. (2008). Sensitivity of the informant questionnaire on cognitive decline: an application of item response theory. Neuropsychology, Development, and Cognition. Section B Aging Neuropsychology Cognition, 15(5), 642–655.

    Article  Google Scholar 

  • Cahn-Weiner, D. A., Boyle, P. A., & Malloy, P. F. (2002). Tests of executive function predict instrumental activities of daily living in community-dwelling older individuals. Applied Neurology, 9(3), 187–191.

    Google Scholar 

  • Connor, D. J., & Sabbagh, M. N. (2008). Administration and scoring variance on the ADAS-Cog. Journal of Alzheimer Disease, 15(3), 461–464.

    Google Scholar 

  • Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, R. L., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.

    Article  PubMed  Google Scholar 

  • Devanand, D. P., Pradhaban, G., Liu, X., Khandji, A., De Santi, S., Segal, S., et al. (2007). Hippocampal and entorhinal atrophy in MCI: prediction of Alzheimer disease. Neurology, 68(11), 828–836.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M. C., Barnes, J., Nielsen, C., Kim, L. G., Clegg, S. L., Blair, M., Leung, K. K., et al. (2010). Volume changes in Alzheimer’s disease and mild cognitive impairment: cognitive associations. European Radiology, 20(3), 674–682.

    Article  PubMed  Google Scholar 

  • Farias, S. T., Mungas, D., Reed, B. R., Harvey, D., Cahn-Weiner, D., & DeCarli, C. (2006). MCI is associated with deficits in everyday functioning. Alzheimer Disease and Associative Disorders, 20(4), 217–223.

    Article  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatry Research, 12(3), 189–198.

    Article  CAS  Google Scholar 

  • Griffith, H. R., Belue, K., Sicola, A., Krzywanski, S., Zamrini, E., Harrell, L., & Marson, D. C. (2003). Impaired financial abilities in mild cognitive impairment: A direct assessment approach. Neurology, 60(3), 449–457.

    Article  PubMed  CAS  Google Scholar 

  • Husted, J. A., Cook, R. J., Farewell, V. T., & Gladman, D. D. (2000). Methods for assessing responsiveness: a critical review and recommendations. Journal of Clinical Epidemiology, 53(5), 459–468.

    Article  PubMed  CAS  Google Scholar 

  • Ihl, R., Ferris, S., Robert, P., Winblad, B., Gauthier, S., & Tennigkeit, F. (2012). Detecting treatment effects with combinations of the ADAS-cog items in patients with mild and moderate Alzheimer’s disease. International Journal of Geriatric Psychiatry, 27(1), 15–21.

    Article  PubMed  Google Scholar 

  • Kirshner, B., & Guyatt, G. (1985). A methodological framework for assessing health indices. Journal of Chronic Disease, 38(1), 27–36.

    Article  CAS  Google Scholar 

  • Koss, E., Patterson, M. B., Ownby, R., Stuckey, J. C., & Whitehouse, P. J. (1993). Memory evaluation in Alzheimer’s disease. Caregiver’s appraisals and objective testing. Archives of Neurology, 50(1), 92–97.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Wu, H. M., Zhou, R. L., Liu, G. J., & Dong, B. R. (2008). Huperzine A for Alzheimer’s disease. Cochrane Database of Systematic Reviews, 16(2).

  • Llano, D. A., Laforet, G., & Devanarayan, V. (2011). Derivation of a new ADAS-Cog composite using tree-based multivariate analysis: prediction of conversion from mild cognitive impairment to Alzheimer disease. Alzheimer Disease & Associative Disorders, 25(1), 73–84.

    Article  Google Scholar 

  • Loveman, E., Green, C., Kirby, J., Takeda, A., Picot, J., Payne, E., & Clegg, A. (2006). The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease. Health Technology Assessment, 10(1), 1–160.

    Google Scholar 

  • Mackinnon, A., Khalilian, A., Jorm, A. F., Korten, A. E., Christensen, H., & Mulligan, R. (2003). Improving screening accuracy for dementia in a community sample by augmenting cognitive testing with informant report. Journal of Clinical Epidemiology, 56(4), 358–366.

    Article  PubMed  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadian, E. M. (1984). Clinical diagnosis of Alzheimer disease: report of the NINCDS-ADRDA work group under the auspices of department of health & human services task force on Alzheimer’s disease. Neurology, 34(7), 939–944.

    Article  PubMed  CAS  Google Scholar 

  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr., Kawas, C. H., Klunk, W. E., Koroshetsz, W. J., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer's & Dementia, 7(3), 263–269.

    Article  Google Scholar 

  • Mohs, R. C., Knopman, D., Petersen, R. C., Ferris, S. H., Ernesto, C., Grundman, M., et al. (1997). Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Disease & Associative Disorders, 11(Suppl 2), S13–21.

    Article  Google Scholar 

  • Morris, J. C. (1993). The clinical dementia rating scale (CDR): current version and scoring rules. Neurology, 43(11), 2412–2414.

    Article  PubMed  CAS  Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (1998–2007). Mplus (Version 5.1). Los Angeles: Author.

  • Nakata, E., Kasai, M., Kasuya, M., Akanuma, K., Meguro, M., Ishii, H., et al. (2009). Combined memory and executive function tests can screen mild cognitive impairment and converters to dementia in a community: the Osaki-Tajiri project. Neuroepidemiology, 33(2), 103–110.

    Article  PubMed  Google Scholar 

  • Pfeffer, R. I., Kurosaki, T. T., Harrah, C. H., Jr., Chance, J. M., & Filos, S. (1982). Measurement of functional activities in older adults in the community. Journal of Gerontology, 37(3), 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Reeve, B. B., Hayes, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). Medical Care, 45(5 Suppl 1), S22–31.

    Article  PubMed  Google Scholar 

  • Reitan, R. M., & Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation. Tucson: Neuropsychology Press.

    Google Scholar 

  • Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer’s disease. The American Journal of Psychiatry, 141(11), 1356–1364.

    PubMed  CAS  Google Scholar 

  • Rozzini, L., Chilovi, B. V., Conti, M., Bertoletti, E., Delrio, I., Trabucchi, M., & Padovani, A. (2007). Conversion of amnestic Mild Cognitive Impairment to dementia of Alzheimer type is independent to memory deterioration. International Journal of Geriatric Psychiatry, 22(12), 1217–1222.

    Article  PubMed  Google Scholar 

  • Sabbagh, M. N., Malek-Ahmadi, M., Kataria, R., Belden, C. M., Connor, D. J., Pearson, C., et al. (2010). The Alzheimer’s questionnaire: a proof of concept study for a new informant-based dementia assessment. Journal of Alzheimer's Disease, 22(3), 1015–1021.

    PubMed  Google Scholar 

  • Sano, M., Raman, R., Emond, J., Thomas, R. G., Petersen, R., Schneider, L. S., & Alsen, P. S. (2011). Adding delayed recall to the Alzheimer Disease Assessment Scale is useful in studies of mild cognitive impairment but not Alzheimer disease. Alzheimer Disease & Associative Disorders, 25(2), 122–127.

    Article  Google Scholar 

  • Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., et al. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology, 65(4), 403–413.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, E., Sherman, E., & Spreen, O. (Eds.). (2006). A compendium of neuropsychological test, administration, norms, and commentary (3rd ed.). Oxford: University Press.

    Google Scholar 

  • Tomaszewski-Farias, S. T., Cahn-Weiner, D. A., Harvey, D. J., Reed, B. R., Mungas, D., Kramer, J. H., & Chui, H. (2009). Longitudinal changes in memory and executive function are associated with longitudinal change in instrumental activities of daily living in older adults. Clinical Neuropsychology, 23(3), 446–461.

    Article  Google Scholar 

  • Wechsler, D. (1987). Weschler adult intelligence scale-revised. San Antonio: The Psychological Cooperation.

    Google Scholar 

  • Wouters, H., van Gool, W. A., Schmand, B., & Lindeboom, R. (2008). Revising the ADAS-Cog for a more accurate assessment of cognitive impairment. Alzheimer Disease and Associative Disorders, 22(3), 236–244.

    Article  Google Scholar 

Download references

Acknowledgments

Elizabeth Sanders prepared the structural model graphics. S. McKay Curtis provided the methods and R code for the bi-factor information curves.

Analyses were supported by NIH grants 5T32AG000258 (J Skinner), R13 AG030995 (Mungas), P50 AG05136 (L Gibbons), R01 AG 029672 (P Crane, L Gibbons), R01 AG 10569 (E Zelinski), and P50 AG005142 (E Zelinski) from the National Institute on Aging, and T32MH19535 (A Thames) and K23MH087741 (Potter) from the National Institute on Mental Health.

Financial disclosure

None reported.

Funding support

ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-LaRoche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer’s Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health

Additional information

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Jeannine Skinner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Appendix 1

(DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skinner, J., Carvalho, J.O., Potter, G.G. et al. The Alzheimer’s Disease Assessment Scale-Cognitive-Plus (ADAS-Cog-Plus): an expansion of the ADAS-Cog to improve responsiveness in MCI. Brain Imaging and Behavior 6, 489–501 (2012). https://doi.org/10.1007/s11682-012-9166-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-012-9166-3

Key words

Navigation