Skip to main content
Log in

Age-Related Changes in Motor Control During Unimanual Movements

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Event related fMRI was used to investigate age-related changes in BOLD activity during the execution of right hand finger movements in internally or externally guided tasks. All of the younger adults exhibited typical (positive) BOLD responses in supplementary motor areas (SMA) bilaterally, and in the left sensorimotor cortex. Negative BOLD responses were found, however, in the right sensorimotor cortex of the younger adults. In contrast, all but one of the older adults had positive BOLD responses in SMA and sensorimotor cortex of both hemispheres. Across both tasks, older adults showed increased activity (relative to younger adults) in right ventrolateral premotor and medial premotor areas, but more so during the internally guided task. Overall, these results suggest age-related changes in motor control. The younger adults’ hemispheric asymmetry and the lack thereof in older adults suggest a fundamental change in interhemispheric communication as part of the normal aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addamo, P.K., Farrow, M., Hoy, K.E., And, B., & Georgiou-Karistianis, J.L.Nellie, in press. The influence of task characteristics on younger and older adult motor overflow. The Quarterly Journal of Experimental Psychology.

  • Baliz, Y., Armatas, C., Farrow, M., Hoy, K. E., Fitzgerald, P. B., Bradshaw, J. L., et al. (2005). The influence of attention and age on the occurrence of mirror movements. Journal of the International Neuropsychological Society, 11(7), 855–862. doi:10.1017/S1355617705051003.

    Article  PubMed  Google Scholar 

  • Behzadi, Y., & Liu, T. T. (2006). Caffeine reduces the initial dip in the visual BOLD response at 3 T. NeuroImage, 32, 9–15. doi:10.1016/j.neuroimage.2006.03.005.

    Article  PubMed  Google Scholar 

  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17, 85–100. doi:10.1037/0882-7974.17.1.85.

    Article  PubMed  Google Scholar 

  • Chainay, H., Krainik, A., Tanguy, M. L., Gerardin, E., Le Bihan, D., & Lehericy, S. (2004). Foot, face and hand representation in the human supplementary motor area. Neuroreport, 15, 765–769. doi:10.1097/00001756-200404090-00005.

    Article  PubMed  Google Scholar 

  • Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61, 1166–1170.

    PubMed  Google Scholar 

  • Colcombe, S. J., Kramer, A. F., McAuley, E., Erickson, K. I., & Scalf, P. (2004). Neurocognitive aging and cardiovascular fitness: recent findings and future directions. Journal of Molecular Neuroscience, 24, 9–14. doi:10.1385/JMN:24:1:009.

    Article  CAS  PubMed  Google Scholar 

  • Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, an International Journal, 29, 162–173. doi:10.1006/cbmr.1996.0014.

    Article  CAS  PubMed  Google Scholar 

  • Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex (New York, N.Y.), 18(5), 1201–1209. doi:10.1093/cercor/bhm155.

    Article  Google Scholar 

  • Fink, G. R., Frackowiak, R. S., Pietrzyk, U., & Passingham, R. E. (1997). Multiple nonprimary motor areas in the human cortex. Journal of Neurophysiology, 77, 2164–2174.

    CAS  PubMed  Google Scholar 

  • Haaland, K. Y., Elsinger, C. L., Mayer, A. R., Durgerian, S., & Rao, S. M. (2004). Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. Journal of Cognitive Neuroscience, 16(4), 621–636. doi:10.1162/089892904323057344.

    Article  PubMed  Google Scholar 

  • Heuninckx, S., Wenderoth, N., & Swinnen, S.P. (2009) Age-related reduction in the differential pathways involved in internal and external movement generation. Neurobiology of Aging.

  • Hoy, K. E., Fitzgerald, P. B., Bradshaw, J. L., Armatas, C. A., & Georgiou-Karistianis, N. (2004). Investigating the cortical origins of motor overflow. Brain Research. Brain Research Reviews, 46(3), 315–327. doi:10.1016/j.brainresrev.2004.07.013.

    Article  PubMed  Google Scholar 

  • Hummel, F., Saur, R., Lasogga, S., Plewnia, C., Erb, M., Wildgruber, D., et al. (2004). To act or not to act. Neural correlates of executive control of learned motor behavior. NeuroImage, 23, 1391–1401. doi:10.1016/j.neuroimage.2004.07.070.

    Article  PubMed  Google Scholar 

  • Kastrup, A., Baudewig, J., Schnaudigel, S., Huonker, R., Becker, L., Sohns, J. M., et al. (2008). Behavioral correlates of negative BOLD signal changes in the primary somatosensory cortex. Neuroimage, 41(4), 1364–1371.

    Article  PubMed  Google Scholar 

  • Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419. doi:10.1038/22682.

    Article  CAS  PubMed  Google Scholar 

  • Krampe, R. T., Engbert, R., & Kliegl, R. (2002). The effects of expertise and age on rhythm production: adaptations to timing and sequencing constraints. Brain and Cognition, 48, 179–194. doi:10.1006/brcg.2001.1312.

    Article  PubMed  Google Scholar 

  • Kuhtz-Buschbeck, J. P., Mahnkopf, C., Holzknecht, C., Siebner, H., Ulmer, S., & Jansen, O. (2003). Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. The European Journal of Neuroscience, 18(12), 3375–3387. doi:10.1111/j.1460-9568.2003.03066.x.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T. T., Behzadi, Y., Restom, K., Uludag, K., Lu, K., Buracas, G. T., et al. (2004). Caffeine alters the temporal dynamics of the visual BOLD response. NeuroImage, 23, 1402–1413. doi:10.1016/j.neuroimage.2004.07.061.

    Article  PubMed  Google Scholar 

  • Manson, S. C., Wegner, C., Filippi, M., Barkhof, F., Beckmann, C., Ciccarelli, O., et al. (2008). Impairment of movement-associated brain deactivation in multiple sclerosis: further evidence for a functional pathology of interhemispheric neuronal inhibition. Experimental Brain Research, 187(1), 25–31. doi:10.1007/s00221-008-1276-1.

    Article  CAS  Google Scholar 

  • Marks, B. L., Madden, D. J., Bucur, B., Provenzale, J. M., White, L. E., Cabeza, R., et al. (2007). Role of aerobic fitness and aging on cerebral white matter integrity. Annals of the New York Academy of Sciences, 1097, 171–174. doi:10.1196/annals.1379.022.

    Article  PubMed  Google Scholar 

  • Meister, I., Krings, T., Foltys, H., Boroojerdi, B., Müller, M., Töpper, R., et al. (2005). Effects of long-term practice and task complexity in musicians and nonmusicians performing simple and complex motor tasks: Implications for cortical motor organization. Hum Brain Mapp, 25(3), 345–352, Jul.

    Google Scholar 

  • Meyer, B. U., Röricht, S., & Woiciechowsky, C. (1998). Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Annals of Neurology, 43(3), 360–369. doi:10.1002/ana.410430314.

    Article  CAS  PubMed  Google Scholar 

  • Naccarato, M., Calautti, C., Jones, P. S., Day, D. J., Carpenter, T. A., & Baron, J. C. (2006). Does healthy aging affect the hemispheric activation balance during paced index-to-thumb opposition task? An fMRI study. NeuroImage, 32, 1250–1256. doi:10.1016/j.neuroimage.2006.05.003.

    Article  CAS  PubMed  Google Scholar 

  • Newton, J. M., Sunderland, A., & Gowland, P. A. (2005). fMRI signal decreases in ipsilateral primary motor cortex during unilateral hand movements are related to duration and side of movement. NeuroImage, 24, 1080–1087. doi:10.1016/j.neuroimage.2004.10.003.

    Article  PubMed  Google Scholar 

  • Oliviero, A., Profice, P., Tonali, P. A., Pilato, F., Saturno, E., Dileone, M., et al. (2006). Effects of aging on motor cortex excitability. Neuroscience Research, 55, 74–77. doi:10.1016/j.neures.2006.02.002.

    Article  CAS  PubMed  Google Scholar 

  • Pasley, B. N., Inglis, B. A., & Freeman, R. D. (2007). Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex. NeuroImage, 36, 269–276. doi:10.1016/j.neuroimage.2006.09.015.

    Article  PubMed  Google Scholar 

  • Peinemann, A., Lehner, C., Conrad, B., & Siebner, H. R. (2001). Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex. Neuroscience Letters, 313, 33–36. doi:10.1016/S0304-3940(01)02239-X.

    Article  CAS  PubMed  Google Scholar 

  • Rao, S. M., Binder, J. R., Bandettini, P. A., Hammeke, T. A., Yetkin, F. Z., Jesmanowicz, A., et al. (1993). Functional magnetic resonance imaging of complex human movements. Neurology, 43(11), 2311–2318.

    CAS  PubMed  Google Scholar 

  • Riecker, A., Groschel, K., Ackermann, H., Steinbrink, C., Witte, O., & Kastrup, A. (2006). Functional significance of age-related differences in motor activation patterns. NeuroImage, 32, 1345–1354. doi:10.1016/j.neuroimage.2006.05.021.

    Article  PubMed  Google Scholar 

  • Sale, M. V., & Semmler, J. G. (2005). Age-related differences in corticospinal control during functional isometric contractions in left and right hands. J Appl Physiol, 99, 1483–1493. doi:10.1152/japplphysiol.00371.2005.

    Article  PubMed  Google Scholar 

  • Shmuel, A., Augath, M., Oeltermann, A., & Logothetis, N. K. (2006). Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nature Neuroscience, 9, 569–577. doi:10.1038/nn1675.

    Article  CAS  PubMed  Google Scholar 

  • Stefanovic, B., Warnking, J. M., Kobayashi, E., Bagshaw, A. P., Hawco, C., Dubeau, F., et al. (2005). Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. NeuroImage, 28, 205–215. doi:10.1016/j.neuroimage.2005.05.038.

    Article  PubMed  Google Scholar 

  • Stefanovic, B., Warnking, J. M., & Pike, G. B. (2004). Hemodynamic and metabolic responses to neuronal inhibition. NeuroImage, 22, 771–778. doi:10.1016/j.neuroimage.2004.01.036.

    Article  PubMed  Google Scholar 

  • Talelli, P., Ewas, A., Waddingham, W., Rothwell, J. C., & Ward, N. S. (2008). Neural correlates of age-related changes in cortical neurophysiology. Neuroimage, 40(4), 1772–1781.

    Article  CAS  PubMed  Google Scholar 

  • Verstynen, T., Diedrichsen, J., Albert, N., Aparicio, P., & Ivry, R. B. (2005). Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. Journal of Neurophysiology, 93(3), 1209–1222. doi:10.1152/jn.00720.2004.

    Article  PubMed  Google Scholar 

  • Ward, N.S., Swayne, O.B., & Newton, J.M. (2008) Age-dependent changes in the neural correlates of force modulation: An fMRI study. Neurobiology of Aging, 29(9), 1434–1446.

    Article  PubMed  Google Scholar 

  • Wu, T., & Hallett, M. (2005). The influence of normal human ageing on automatic movements. The Journal of Physiology, 562(Pt 2), 605–615. doi:10.1113/jphysiol.2004.076042.

    CAS  PubMed  Google Scholar 

  • Yousry, T. A., Schmid, U. D., Alkadhi, H., Schmidt, D., Peraud, A., Buettner, A., et al. (1997). Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain, 120(Pt 1), 141–157. doi:10.1093/brain/120.1.141.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Center of Excellence grant # F2182C and Research Career Scientist Award # B3470S from the Department of Veterans Affairs Rehabilitation Research and Development Service, and by grant # M47 from the Evelyn F. McKnight Brain Research Grant Program at the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith D. White.

Appendix

Appendix

Individual estimated hemodynamic response functions from which the group analyses above were derived are shown in Figs. 5, 6, 7, 8, 9, 10, 11 and 12. Each figure shows response magnitude as relative signal change (in percent) because the six curves in each figure, either for the group of young participants or the group of older participants, have been displaced vertically for clarity. Vertical displacements were 0, 1, 2, 3, 4, or 5 percent. Each figure’s abscissa shows deconvolution lag (in TR or image number) relative to the task event with which the deconvolution was time-locked. Because TR = 1.7 sec, the hemodynamic responses are shown evolving over a 25.5 sec time period. A given symbol shape corresponds to a given subject number across the figures (but note, for example, that O-1 and Y-1 belong to different age groups and are represented on different figures). Each plotted point shows the mean +/- standard deviation of signals obtained from the five maximally significant voxels within primary sensorimotor cortex (M1S1). Different figures represent younger versus older participant group, left versus right hemisphere’s M1S1, and internally versus externally guided task, as labeled on each figure.

Fig. 5
figure 5

Each curve plots an individual participant’s estimated hemodynamic responses as a function of lag (given in TR, where TR = 1,700 msec). The ordinate shows percent signal change for the lowest curve. The five higher curves have been displaced vertically by 1, 2, 3, 4, and 5 percent signal change respectively Each symbol represents mean +/- standard deviation for signals obtained from the five maximally significant voxels within primary sensorimotor cortex (M1S1). These results were obtained from older participants’ left hemispheres during the internally guided (learned) task

Fig. 6
figure 6

Conventions as in Fig. 5. These results were obtained from younger participants’ left hemispheres during the internally guided (learned) task

Fig. 7
figure 7

Conventions as in Fig. 5. These results were obtained from older participants’ right hemispheres during the internally guided (learned) task

Fig. 8
figure 8

Conventions as in Fig. 5. These results were obtained from younger participants’ right hemispheres during the internally guided (learned) task

Fig. 9
figure 9

Conventions as in Fig. 5. These results were obtained from older participants’ left hemispheres during the externally guided (novel) task

Fig. 10
figure 10

Conventions as in Fig. 5. These results were obtained from younger participants’ left hemispheres during the externally guided (novel) task

Fig. 11
figure 11

Conventions as in Fig. 5. These results were obtained from older participants’ right hemispheres during the externally guided (novel) task

Fig. 12
figure 12

Conventions as in Fig. 5. These results were obtained from younger participants’ right hemispheres during the externally guided (novel) task

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGregor, K.M., Craggs, J.G., Benjamin, M.L. et al. Age-Related Changes in Motor Control During Unimanual Movements. Brain Imaging and Behavior 3, 317–331 (2009). https://doi.org/10.1007/s11682-009-9074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-009-9074-3

Keywords

Navigation