Skip to main content
Log in

Variable-top stem biomass equations at tree-level generated by a simultaneous density-integral system for second growth forests of roble, raulí, and coigüe in Chile

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Variable-top stem biomass models at the tree level for second growth forests of roble (Nothofagus obliqua), raulí (Nothofagus alpina), and coigüe (Nothofagus dombeyi) were fitted by a simultaneous density-integral system, which combines a stem taper model and a wood basic density model. For each model, an autoregressive structure of order 2 and a power equation of residual variance were incorporated to reduce residual autocorrelation and heteroscedasticity, respectively. By using dummy variables in the regression analysis, zonal effects on the parameters in the variable-top stem biomass equations were detected in roble. Consequently, equations for clusters of zones were obtained. These equations presented significant parameters and a high precision in both fitting and validation processes (i.e., CV < 11.5% and CVp < 11.9%, respectively), demonstrating that they are unbiased. The advantage of these types of functions is that they provide estimates of volume and biomass of sections of the stem, defined between any two points of the stem in the three species. Thus, depending on the final use of the wood and the dimensions of the tree, a stem fraction can be quantified in units of volume and the remaining fraction in units of weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical identification model. IEEE Trans Autom Control 19(2):716–723

    Article  Google Scholar 

  • Arias-Rodil M, Diéguez-Aranda U, Rodríguez F, López-Sánchez C, Canga E, Cámara A, Castedo-Dorado F (2015) Modelling and localizing a stem taper function for Pinus radiata in Spain. Can J For Res 45:647–658

    Article  Google Scholar 

  • Barrio M, Álvarez-González JG, Díaz-Maroto IJ (2004) Elaboración de una tarifa con clasificación de productos para Quercus robur L. en Galicia basada en un modelo de volumen porcentual. Investig Agraria Sist Recur For 13:506–517

    Google Scholar 

  • Brooks JR, Lichun J, Alexander C (2007a) Compatible stem taper, volume, and weight equations for young longleaf pine plantations in Southwest Georgia. South J Appl For 31(4):187–191

    Article  Google Scholar 

  • Brooks JR, Jiang LC, Zhang YJ (2007b) Predicting green and dry mass of yellow-poplar: an integral approach. Can J For Res 37(4):786–794

    Article  Google Scholar 

  • Brown S, Gillespie A, Lugo A (1989) Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci 35(4):881–902

    Google Scholar 

  • Bruce R, Curtis L, Van Coevering C (1968) Development of a system of taper and volume tables for red alder. For Sci 14:339–350

    Google Scholar 

  • Calegario N, Gregoire TG, da Silva TA, Filho MT, Alves JA (2017) Integrated system of equations for estimating stem volume, density, and biomass for Australian redcedar (Toona ciliata) plantations. Can J For Res 47:681–689

    Article  Google Scholar 

  • Canales AV (2009) Efecto de la intensidad de raleo en el área foliar y la distribución de biomasa en árboles individuales pertenecientes a un renoval puro de roble (Nothofagus oblicua. Mirb. Oerst) de 34 años de edad. Tesis Ingeniero Forestal. Universidad de Concepción, Facultad de Ciencias Forestales, Concepción, Chile, p 29

  • CONAF (2011) Corporación Nacional Forestal, CL. Catastro de los recursos vegetacionales nativos de Chile. Sección Monitoreo de Ecosistemas Forestales. Santiago, Chile, p 28

  • Crecente-Campo F, Rojo A, Diéguez-Aranda U (2009) A merchantable volume system for Pinus sylvestris L. in the major mountains ranges of Spain. Ann For Sci 66(808):1–12

    Google Scholar 

  • Díaz G, Monteoliva S, Álvarez J, Fernández E (2010) Populus deltoides ‘Australiano 129/60’: variación axial de la densidad y desarrollo de un modelo predictivo de la densidad del árbol completo. Bosque 31(1):65–72

    Article  Google Scholar 

  • Diggle PJ, Heagerty P, Liang KY, Zeger SL (2001) Analysis of longitudinal data, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Donoso P, Donoso C, Sandoval V (1993) Proposición de zonas de crecimiento de renovales de roble (Nothofagus obliqua) y raulí (Nothofagus alpina) en su rango de distribución natural. Bosque 14(2):37–55

    Article  Google Scholar 

  • Fang SZ, Yang WZ (2003) Interclonal and within-tree variation in wood properties of poplar clones. J For Res 14(4):263–268

    Article  Google Scholar 

  • Fehrmann L, Kleinn C (2006) General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in central Europe. For Ecol Manag 236:412–421

    Article  Google Scholar 

  • Flórez V, Valenzuela C, Acuña E, Cancino J (2014) Combining taper and basic wood density equations for estimating stem biomass of the Populus x canadensis I-488 variety. Bosque 35(1):89–100

    Article  Google Scholar 

  • Fonseca W, Alice FG, Rey JM (2009) Modelos para estimar la biomasa de especies nativas en plantaciones y bosques secundarios en la zona Caribe de Costa Rica. Bosque 30(1):36–47

    Article  Google Scholar 

  • Garber SM, Maguire DA (2003) Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures. For Ecol Manag 179:507–522

    Article  Google Scholar 

  • Gayoso J (2002) Medición de la capacidad de captura de carbono en bosques nativos y plantaciones de Chile. Rev For Iberoam 1(1):1–13

    Google Scholar 

  • Gayoso J (2013) Funciones alométricas para la determinación de existencias de carbono forestal para la especie Nothofagus obliqua (Mirb.) Oerst. (roble), Santiago, Chile, CONAF, p 41

  • Gómez-García E, Crecente-Campo F, Diéguez-Aranda U (2013) Selection of mixed-effects parameters in a variable-exponent taper equation for birch trees in northwestern Spain. Ann For Sci 70(7):707–715

    Article  Google Scholar 

  • Gregoire TG, Schabenberger O (1996) A non-linear mixed-effects model to predict cumulative bole volume of standing trees. J Appl Stat 23(2–3):257–271

    Article  Google Scholar 

  • Gregoire TG, Schabenberger O, Barrett JP (1995) Linear modeling of irregularly spaced, unbalanced, longitudinal data from permanent plot measurement. Can J For Res 25:137–156

    Article  Google Scholar 

  • Hardy M (1993) Regression with dummy variables. Sage university paper series on quantitative applications in the Social Sciences, 07–093. Sage, Newbury Park, CA

  • Harvey AC (1976) Estimating regression models with multiplicative heteroscedasticity. Econometrica 44(3):461–465

    Article  Google Scholar 

  • Jordan L, Souter R, Parresol B, Daniels RF (2006) Application of the algebraic difference approach for developing self-referencing specific gravity and biomass equations. For Sci 52(1):81–92

    Google Scholar 

  • Kozak A (1997) Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Can J For Res 27(5):619–629

    Article  Google Scholar 

  • Lara A, Donoso C, Donoso P, Nuñez P, Cavieres A (1999) Normas de manejo para raleo de renovales del tipo forestal roble–raulí–coigüe. In: Silvicultura de los bosques nativos de Chile. 1a Ed. Universitaria, Santiago, Chile, pp 129–144

  • Leites LP, Robinson AP (2004) Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework. For Sci 50:204–212

    Google Scholar 

  • Li CP, Xiao CW (2007) Above- and belowground biomass of Artemisia ordosica communities in three contrasting habitats of the Mu Us desert, northern China. J Arid Environ 70:195–207

    Article  Google Scholar 

  • Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687

    Article  CAS  Google Scholar 

  • Muñoz L (2013) Desarrollo de modelos flexibles para la determinación de biomasa fustal de Pinus radiata D. Don en suelos trumaos de la Precordillera andina. Tesis Ingeniero Forestal. Universidad de Concepción, Facultad de Ciencias Forestales, Concepción, Chile, p 32

  • Návar CJ, Gonzáles N, Graciano J (2001) Ecuaciones para estimar el rendimiento e incremento de biomasa total en plantaciones forestales de Durango, México. Simposio internacional medición y monitoreo de la captura de carbono en ecosistemas forestales, Valdivia-Chile, p 13

  • Návar J, Nájera J, Jurado E (2002) Biomass estimation equations in the Tamaulipan thornscrub of northeastern Mexico. J Arid Environ 52:167–179

    Article  Google Scholar 

  • Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1998) Applied linear statistical models. Mc Graw-Hill, New York, p 1408

    Google Scholar 

  • ODEPA (2000) Oficinas De Estudios y Políticas Agrarias. Clasificación de las explotaciones agrícolas del VI censo nacional agropecuario según tipo de productor y localización geográfica. Ministerio de Agricultura. Documento de trabajo No. 5. I.S.S.N. 0717−0378. Santiago, Chile, p 91

  • Ott P (1997) The use of indicator variables in non-linear regression. Biometrics information. Ministry of Forests Research Program, British Columbia. Pamphlet 56

  • Parresol BR, Thomas CE (1989) A density integral approach to estimating stem biomass. For Ecol Manag 26:285–297

    Article  Google Scholar 

  • Parresol BR, Thomas CE (1996) A simultaneous density-integral system for estimating stem profile and biomass: slash pine and willow oak. Can J For Res 26:773–781

    Article  Google Scholar 

  • Prodan M, Peters R, Cox F, Real P (1997) Mensura forestal. IICA-GTZ, San José, p 561

    Google Scholar 

  • Sáez M (1991) Biomasa y contenido de nutrientes de renovales no intervenidos roble–raulí (Nothofagus obliqua (Mirb) Oerst—Nothofagus alpina (Poepp. et Endl.) Oerst) en suelos volcánicos de la Precordillera Andina, IX Región, Tesis de Grado. Universidad de Chile, Escuela de Ciencias Forestales, Santiago, Chile, p 96

  • SAS (2009) SAS/STAT® 9.2 user’s guide, 2nd edn. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Tasissa G, Burkhart HE (1998) An application of mixed effects analysis to modeling thinning effects on stem profile of loblolly pine. For Ecol Manag 103:87–101

    Article  Google Scholar 

  • Teshome T (2005) A ratio method for predicting stem merchantable volume and associated taper equations for Cupressus lusitanica, Ethiopia. For Ecol Manag 204:171–179

    Article  Google Scholar 

  • Thomas CE, Parresol BR, Lê KH, Lohrey RE (1995) Biomass and taper for trees in thinned and unthinned longleaf pine plantations. South J Appl For 19(1):29–35

    Article  Google Scholar 

  • Trincado G, Burkhart HE (2006) A generalized approach for modeling and localizing stem profiles curves. For Sci 52:670–682

    Google Scholar 

  • Vargas-Larreta B, López-Sanchez CA, Corral-Rivas JJ, López-Martínez JO, Aguirre-Calderon CG, Álvarez-González JG (2017) Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests 8:269

    Article  Google Scholar 

  • Ver Planck NR, Macfarlane DW (2015) A vertically integrated whole-tree biomass model. Trees 29:449–460

    Article  Google Scholar 

  • Yang YQ, Huang SM, Meng SX (2009) Development of a tree-specific stem profile model for white spruce: a nonlinear mixed model approach with a generalized covariance structure. Forestry 82(5):541–555

    Article  Google Scholar 

  • Zakrzewski WT, Duchesne I (2012) Stem biomass model for jack pine (Pinus banksiana Lamb.) in Ontario. For Ecol Manag 279:112–120

    Article  Google Scholar 

  • Zhang YJ, Borders BE, Bailey RL (2002) Derivation, fitting, and implication of a compatible stem taper-volume-weight system for intensively managed, fast growing loblolly pine. For Sci 48(3):595–607

    Google Scholar 

  • Zimmerman D, Núñez-Antón V (2001) Parametric modelling of growth curve data: an overview. Test 10(1):1–73

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the Forest Company MASISA S.A., for granting access to farms of its assets to collect data.

Author information

Authors and Affiliations

Authors

Contributions

Carlos Valenzuela and Gerónimo Quiñonez-Barraza are co-authors.

Corresponding author

Correspondence to Carlos Valenzuela.

Additional information

Project funding: The work was financial supported by the the Corporación Nacional Forestal (CONAF) (Project 025/2012 “Desarrollo de herramientas de cuantificación biométrica generalizadas para el manejo y uso integral sustentable de renovales de Nothofagus spp.”) III Concurso del Fondo de Investigación del Bosque Nativo.

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, C., Acuña, E., Ortega, A. et al. Variable-top stem biomass equations at tree-level generated by a simultaneous density-integral system for second growth forests of roble, raulí, and coigüe in Chile. J. For. Res. 30, 993–1010 (2019). https://doi.org/10.1007/s11676-018-0630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0630-9

Keywords

Navigation