Skip to main content
Log in

Physical and mechanical properties of Klainedoxa gabonensis with engineering potential

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Adequate information is sparse for many tropical timbers on their engineering applications, which make their international promotion difficult. The physical and mechanical properties of Klainedoxa gabonensis Pierre ex Engl. (a lesser-utilized species) and Entandrophragma cylindricum were compared. K. gabonensis contained more moisture with greater density at 12 % moisture content than E. cylindricum and had a tangential–radial ratio for swelling and shrinkage of 1.31–1.38 and 1.58–1.63, respectively, within acceptable thresholds for engineering/structural timbers. For K. gabonensis, shear parallel to grain was 32.2 ± 0.4–33.5 ± 1 N mm−2; compressive parallel to grain, 80.7 ± 1.4–90.6 ± 1 N mm−2; modulus of rupture, 204 ± 4.0–214 ± 4.0 N mm−2 and modulus of elasticity, 28,932 ± 664–29,493 ± 822 N mm−2. These properties were superior to those of E. cylindricum [(15.5 ± 0.9)–(15.6 ± 0.6), (56.4 ± 4.5)–(63.6 ± 1.2), (99.4 ± 4.7)–(121.3 ± 10.6), and (9987.4 ± 207)–(10,051 ± 258) N mm−2, respectively] and compared well with those of several traditional timbers for construction and furniture production. Its use would contribute to minimize pressure on the primary timbers in the forests and widen the raw material base for wooden products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addae-Wireko L (2008) Mapping distribution of butterflies in Central Bobiri Forest and investigation of logging and stage of regeneration on butterfly species richness and diversity Reserve. Thesis (MSc). International Institute for Geo-information Science and Earth Observation (The Netherland) and Kwame Nkrumah University of Science and Technology (Ghana)

  • Ali CA (2011) Physical-mechanical properties and natural durability of lesser used wood species from Mozambique. Thesis (PhD). Swedish University of Agricultural Sciences. 60 pp

  • Anderson LO (2002) Wood-frame house construction. The Minerva Group Inc., New York, 236 pp

  • Antwi-Boasiako C, Boadu KB (2013) Swelling characteristics of conventional and organic preservative-treated porous tropical utility hardwood [Ceiba pentandra (l.) gaertn.]. Spec Topics Rev Porous Media 4(2):137–145

    Article  Google Scholar 

  • Asamoah A, Atta-Boateng A, Sarfowaa A (2012) Intsia bijuga (Colebr.). In: Lemmens RHMJ, Louppe D, Oteng-Amoako AA (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen. http://www.prota4u.org/search.asp. Accessed 17 Feb 2015

  • ASTM D 1037-06a (24) (2006) Test methods for evaluating properties of wood-base fiber and particle panel materials. Linear expansion with change in moisture content. American Standard for Testing Materials

  • Bekhta P, Niemz P (2009) Effect of relative humidity on some physical and mechanical properties of different types of fibreboard. Eur J Wood Prod 67(3):339–342

    Article  CAS  Google Scholar 

  • Boon-Kwee Ng, Thiruchelvam K (2012) The dynamics of innovation in Malaysia’s wooden furniture industry: innovation actors and linkages. For Policy Econ 14:107–118

    Article  Google Scholar 

  • British Standard Institution, 1957. BS 373 (1957) Methods of testing small clear specimens of timber

  • Cordero LDP, Kanninen M (2002) Wood density and aboveground biomass of Bombacopsis quinata plantations in Costa Rica. For Ecol Manag 165:1–9

    Article  Google Scholar 

  • Davis EM (1962) Machining and related characteristics of United States Hardwoods. Technical Bulletin No. 1267

  • Derome D, Griffa M, Koebel M, Carmeliet J (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J Struct Biol 173:180–190

    Article  PubMed  Google Scholar 

  • Desch HE, Dinwoodie JM (1996) Timber: structure, properties, conversion, and use. 7th edn. Food Products Press, New York, 320 pp

  • Dickison W (2000) Integrative plant anatomy. Academic Press, New York, 234 pp

  • Dilik T, Dündar T, Kurtoğlu A, Hiziroglu S (2007) Effect of adhesive types on some of the properties of laminated window profiles. J Mater Process Technol 189(1–3):320–324

    Article  CAS  Google Scholar 

  • Doumenge C, Séné VO (2012) Lophira alata Banks ex C.F.Gaertn. In: Lemmens RHMJ, Louppe D, Oteng-Amoako AA (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen. http://www.prota4u.org/search.asp. Accessed 4 March 2015

  • Eckelman CA (1998) The shrinking and swelling of wood and its effect on furniture. Purdue University Cooperative Extension Service, 26 pp

  • Forest Products Development and Marketing Council of Guyana Inc. (2015) Limonaballi. http://www.fpdmcguy.org/SpeciesPages/speciespage.aspx?spid=Limonaballi. Accessed 17 Feb 2015

  • Forest Products Laboratory (2010) Wood handbook—wood as an engineering material. Madison, Forest Products Society: General Technical Report FPL-GTR-190. 508 pp

  • Forest Products Research and Development Institute (FPRDI) and International Tropical Timber Organization (ITTO) (1997) Manual on the properties and uses of lesser-used species of philippine timbers. FPRDI-ITTO Project PD 47/88 Rev. 3(1), 98 pp

  • Ghana Forestry Commission (2012) Guidebook of some lesser used timbers of Ghana, 38 pp

  • Gindl W, Teischinger A (2002) Axial compression strength of Norway spruce related to structural variability and lignin content. Compos A 33(12):1623–1628

    Article  Google Scholar 

  • Green H (2007) Wood: craft, culture, history. Penguin, New York, 464 pp

  • Gryc V, Horácek P (2007) Variability in density of spruce (Picea abies[L.] Karst.) wood with the presence of reaction wood. J For Sci 53(3):129–137

    Google Scholar 

  • Gunduz G, Korkut S, Aydemir D, Bekar I (2009) The density, compression strength and surface hardness of heat treated hornbeam (Carpinus betulus L.) wood. Maderas. Ciencia y tecnología 11(1):61–70

    Article  Google Scholar 

  • Hagstrom C (2010) Understanding moisture content and wood movement. http://www.thisiscarpentry.com/2010/09/03/moisture-content-wood-movement/. Accessed 9 Sept 2014

  • Harris T, Pond B (2012) The importance of shear testing in process design, quality control. http://www.qualitymag.com/articles/90413-the-importance-of-shear-testing-in-process-design–quality-control. Accessed 9 Sept 2014

  • Haviarova E, Eckelman C, Erdil Y (2001) Design and testing of environmentally friendly wood school chairs for developing countries. For Prod J 51(3):58–64

    Google Scholar 

  • Haygreen JG, Bowyer JL (1996) Forest products and wood science, 3rd edn. Iowa State University Press, Ames, 484 pp

  • Hernandez ER (2007) Influence of accessory substances, wood density and interlocked grain on the compressive properties of hardwoods. Wood Sci Technol 41:249–265

    Article  CAS  Google Scholar 

  • Izekor DN, Fuwape JA, Oluyege AO (2010) Effects of density on variations in the mechanical properties of plantation grown Tectona grandis wood. Arch Appl Sci Res 2(6):113–120

    Google Scholar 

  • Johnson GC, Tornton JD, Trajstman AC, Cookson LJ (2006) Comparative in -ground natural durability of white and black cypress pines (Callitris glaucophylla and C. endlicheri). Aust For 69(4):243–247

    Article  Google Scholar 

  • Kémeuzé VA (2008) Entandrophragma cylindricum (Sprague). In: Louppe D, Oteng-Amoako AA, Brink M (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale). Wageningen. www.prota4u.org/search.asp. Accessed 16 April 2013

  • Kumaran MK (1999) Moisture diffusivity of building materials from water absorption measurements. J Therm Envel Build Sci 22:349–355

    Google Scholar 

  • Lima IL, Longui EL, Freitas MLM, Zanatto ACS, Zanata M (2014) Physical-mechanical and anatomical characterization in 26-year-old Eucalyptus resinifera wood. Floresta e Ambiente 21(1):91–98

    Article  Google Scholar 

  • Mantanis GI, Young RA, Rowell RM (1994) Swelling of wood Part 1. Swelling in water. Wood Sci Technol 28:119–134

    Article  CAS  Google Scholar 

  • Massayuki M, Matoski A, Magajewski C, Machado J (2014) Shear strength parallel of the wood fiber stress by punching - proposed test. Revista Ing Constr 29(1):46–60

    Article  Google Scholar 

  • Mecklenburg MF (2007) Determining the acceptable ranges of relative humidity and temperature in museums and galleries, part 1, structural response to relative humidity, pp. 1–57. http://si-pddr.si.edu/dspace/handle/100887055. Accessed 5 Nov 2014

  • Meier E (2014) The wood database. http://www.wood-database.com/wood-articles/crushing-strength/. Accessed 7 Oct 2014

  • Minford JD (1991) Treatise on adhesion and adhesives, vol 7. CRC Press, Florida, 528 pp

  • Murata K, Masuda M (2006) Microscopic observation of transverse swelling of latewood tracheid: effect of macroscopic/mesoscopic structure. J Wood Sci Technol 52:283–289

    Article  Google Scholar 

  • Niklas JK (1997) Mechanical properties of black locust (Robinia pseudoacacia) wood: correlations among elastic and rupture moduli, proportional limit, and tissue density and specific gravity. Ann Bot 79:479–485

    Google Scholar 

  • Ocloo JK, Laing E (2003) Correlation of relative density and strength properties with anatomical properties of the wood of Ghana Celtis species. Discov Innov 15(3/4):186–197

    Google Scholar 

  • Ofori DA (2007) Milicia excelsa (Welw.) C.C.Berg. In: Louppe D, Oteng-Amoako AA, Brink M (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen. http://www.prota4u.org/search.asp. Accessed 4 March 2015

  • Oteng-Amoako AA, Obeng EA (2012) Klainedoxa gabonensis (Pierre). In: Lemmens RHMJ, Louppe D, Oteng-Amoako AA (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale). Wageningen. www.prota4u.org/search.asp. Accessed 16 April 2013

  • Ozcifci A, Ayar S, Baysal E, Toker H (2011) The effects of some impregnation parameters on modulus of rupture and modulus of elasticity of wood. Wood Res 56(2):277–284

    CAS  Google Scholar 

  • Pakarinen T (1999) Success factors of wood as a furniture material. For Prod J 49(9):79–85

    Google Scholar 

  • Persson K (1997) Modelling of wood mechanical properties by a micromechanical approach. Thesis (PhD), University of Lund

  • Pinto I, Pereira H, Usenius A (2004) Heartwood and sapwood development within maritime pine (Pinus pinaster Ait) stems. Trees 18(3):284–294

    Article  Google Scholar 

  • Postell J (2012) Furniture Design. Wiley, New York, 416 pp

  • Rijsdijk JF, Laming PB (2010) Physical and related properties of 145 timbers: information for practice. Springer, Dorfrecht, 380 pp

  • Rivers S, Umney N (2007) Conservation of furniture. Routledge, New York, 840 pp

  • Rowell RM (2005) Handbook of wood chemistry and wood composites. CRC Press, Florida, 487 pp

  • Rowell MR, Ibach ER, McSweeny J, Nilsson T (2009) Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Mater Sci Eng 4(1–2):14–22

    Article  CAS  Google Scholar 

  • Shelly JR (2001) Wood: materials for furniture. Encyclopedia of materials: science and technology. Elsevier, Michigan, pp 9658–9663

    Chapter  Google Scholar 

  • Sherwood GE (1994) Moisture-related properties and the effect of moisture on wood and wood products. In Treschsel RH (ed) Moisture control in buildings. ASTM International, pp. 72–83

  • Shmulsky R, Jones DP (2011) Forest products and wood science. 6th edn. Wiley, New York, 496 pp

  • Simeone R (2011) Tropical treasury: lesser known species. www.nepcon.pl/newsroom/tropical-treasury-known-species. Accessed 20 Oct 2014

  • Smith PM (2000) Utilization of lesser-used species as alternative raw materials for forest-based industries. International Tropical Timber Organization, 95 pp

  • Strong J (2013) Types of wood for woodworking. http://www.dummies.com/how-to/content/types-of-wood-for-woodworking.html. Accessed 15 Sept 2014

  • Tankut N (2007) The effect of adhesive type and bond line thickness on the strength of mortise and tenon joints. Int J Adhes Adhes 27:493–498

    Article  CAS  Google Scholar 

  • Unger A, Schniewind A, Unger W (2001) Conservation of wood artifacts: a handbook. Springer, Berlin, 578 pp

  • Unsal O, Ayrilmis N (2005) Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. J Wood Sci 51:405–409

    Article  CAS  Google Scholar 

  • Upton DAJ, Attah A (2003) Commercial timbers of Ghana—the potential for lesser used species. Forestry Commission of Ghana, 58 pp

  • Vick CB (1999) Adhesive bonding of wood materials. Wood handbook wood as an engineering material. Forest Products Society, Madison, pp 23–76

    Google Scholar 

  • Wahab R, Mustafa TM, Shafiqur R, Mohammed SA, Othman S, Mahmud S, Mat RMS (2012) Relationship between physical, anatomical and strength properties of 3-year-old cultivated tropical bamboo Gigantochloa scortechinii. ARPN J Agric Biol Sci 7(10):782–791

    Google Scholar 

  • Winandy JE (1994) Wood properties. In: Arntzen CJ (ed) Encyclopedia of agricultural science. Academic Press, San Diego, pp 549–561

    Google Scholar 

  • Zhang SY (1997) Wood specific gravity mechanical property relationship at species level. Wood Sci Technol 31:181–191

    Article  CAS  Google Scholar 

  • Zhu Y, Wang W, Cao J (2014) Improvement of hydrophobicity and dimensional stability of thermally modified southern pine wood pretreated with oleic acid. BioResources 9(2):2431–2445

    CAS  Google Scholar 

  • Zobel BJ, Jett JB (1995) Genetics of wood production. Springer, New York, 337 pp

  • Zwerger K (2012) Wood and wood joints: building traditions of Europe, Japan and China. Walter de Gruyter, Berlin, 304 pp

Download references

Acknowledgments

We thank the staff from the Juaso Forest Services Division (FSD) of the Forestry Commission (FC) of Ghana (for the supply of the wood samples), Chemistry Laboratory and Wood Workshop of the Department of Wood Science & Technology, KNUST, Kumasi-Ghana (for sample preparation and testing physical properties) and Forest Products, Trade and Marketing Division of the Forest Research Institute of Ghana (FORIG), Kumasi (for determining strength properties). We also appreciate the statistical advice by Mr. Eric Owusu Danquah (Statistician, Crops Research Institute of Ghana, CSIR, Kumasi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Antwi-Boasiako.

Additional information

The online version is available at http://www.springerlink.com

Corresponding Editor: Yu Lei

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boadu, K.B., Antwi-Boasiako, C. & Frimpong-Mensah, K. Physical and mechanical properties of Klainedoxa gabonensis with engineering potential. J. For. Res. 28, 629–636 (2017). https://doi.org/10.1007/s11676-016-0331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-016-0331-1

Keywords

Navigation