Skip to main content
Log in

The Systems Li-Tl, Na-Tl and K-Tl

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

It is a well-known and often-used heuristic in chemistry to compare properties of chemically related systems. In the present case, the physical chemistry of binary systems of thallium with alkali metals Li, Na and K are presented together to show similarities and differences. In each case, the literature was mined to retrieve original experimental data for the phase diagram, thermodynamic properties of solutions and compounds, structural information for compounds and effects of pressure. Special attention is given to the phase diagram, by plotting data and showing assessed phase boundaries. Whether stated by investigators or nor, mutual solid solubility of the components at the composition extremes was evaluated. In some cases, investigators omitted the presence of αTl (low temperature solid structure) in their reports. In these cases, the assessed phase diagrams include suggested possible phase boundaries to indicate the existence of two forms of solid Tl. Thallium is the heaviest member of the triel group of elements B → Nh (Group 13 new notation, Group IIIB old notation). These elements tend to form clusters or cages, as concluded from neutron diffraction measurements on liquid solutions (Verkerk et al. in J Phys Condens Matter 6(Suppl. 23A):A255–A260, 1994, Van der Aart et al. in Phys B 234–236:362–363, 1997, Van der Aart et al. in J Non-Cryst 250–252(Part 1):241–244, 1999). They may be represented by [Tln]m−, where n may take values from 4 to 13, and m from 5 to 11. The particular values of m and n depend on the number and identity of cations in the structure (Dong and Corbett in J Am Chem Soc 117(24):6447–6455, 1995, Corbett in Angew Chem 112(4):682–704, 2000, Wang et al. in J Am Chem Soc 134(48):19884–19894, 2012). The structures are described as “hypoelectronic” (electron-poor). This multiplicity of structures probably accounts for the fact that, in some systems, not all synthesized compounds appear in the phase diagram, and some may have mislabelled stoichiometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Grube and G. Schaufler, Elektrische Leitfähigkeit und Zustandsdiagramm bei binären Legierung. 14. Das System Lithium-Thallium (Electrical Conductivity and Phase Diagrams of Binary Alloys. The System Lithium-Thallium), Z. Elektrochem., 1934, 40(8), p 593-600 (in German)

    Google Scholar 

  2. Y. Shimizu and T. Itami, Phase Diagram and 7Li Knight Shift of Liquid Li-Tl Alloys, Mater. Trans., 2004, 45(8), p 2630-2633

    Article  Google Scholar 

  3. Y. Shimizu and T. Itami, Phase Diagram and 7Li Knight Shift of Liquid Li-Tl Alloys, Nippon Kinzoku Gakkaishi, 2005, 69(10), p 859-862

    Google Scholar 

  4. Y. Shimizu and T. Itami, The Charge Transfer and Ion Formation in Liquid Li-Tl Alloys, J. Non-Cryst. Solids, 2007, 353(32-40), p 3211-3215

    Article  ADS  Google Scholar 

  5. G. Grube, Über die elektrische Leitfähigkeit binärer Legierungen (The Electrical Conductivity of Binary Alloys), Z. Elektrochem., 1950, 54(2), p 99-107 (in German)

    Google Scholar 

  6. A.G. Morachevskii and A.I. Demidov, Thermodynamic Properties of Lithium Melts, Zh. Fiz. Khim., 1983, 57(9), p 2113-2128 (in Russian); TR: Russ. J. Phys. Chem., 1983, 57(9), 1287-1297

  7. T.B. Massalski, Binary Alloy Phase Diagrams, Vol 3, 2nd ed., ASM International, Materials Park, 2001

    Google Scholar 

  8. M.W. Chase, Heats of Transition of the Elements, Bull. Alloy Phase Diag., 1983, 4(1), p 124

    Google Scholar 

  9. M.W. Chase, Melting Points of the Elements, Bull. Alloy Phase Diag., 1983, 7(6), p 602

    Google Scholar 

  10. H. Schäfer, On the Problem of Polar Intermetallic Compounds: The Stimulation of E. Zintl’s Work for the Modern Chemistry of Intermetallics, Ann. Rev. Mater. Sci., 1985, 15, p 1-41

    Article  ADS  Google Scholar 

  11. J. Stöhr and H. Schäfer, Structural Principles of Lithium-Group III, Compounds, Acta Crystallogr. A, 1981, 37(Suppl.), p C-315

    Google Scholar 

  12. J. Stöhr and H. Schäfer, Die Kristallstrukturen von Li3In2, Li5Tl2 und Li3Tl (The Crystal Structures of Li3In2, Li5Tl2 and Li3Tl), Z. Naturforsch. B, 1979, 34B(5), p 653-656 (in German)

    Google Scholar 

  13. G.I. Oleksiv, Crystal Structures of Binary Compounds of Lithium with Strontium, Barium, Aluminum, Thallium, Silicon and Germanium, Probl. Rosvitku Prirodn. Tochn. Nauk, Sb.(Lvov), 1964, p 76-77 (in Ukrainian)

  14. E. Zintl, G. Brauer, Metalle und Legierungen. 10. Über die Valenzelektronenregel und die Atomradien unedler Metalle in Legierungen (Metals and Alloys. 10. The Valence Electron Rule and the Atomic Radius of Non-noble Metals in Alloys), Z. Phys. Chem. B, 1933, 20, p 245-271 (in German)

  15. A.B. Makhnovetskii and G.L. Krasko, The Pseudopotential Method and the Problem of Ordering in Alloys. III. Intermetallic Compounds LiAl, LiTl and NaTl, Phys. Stat. Solidi, 1977, 80(1), p 341

    Article  ADS  Google Scholar 

  16. J.F. Smith and Z. Moser, Thermodynamic Properties of Binary Lithium Systems—A Review, J. Nucl. Mater., 1976, 59(2), p 158-174

    Article  ADS  Google Scholar 

  17. S.P. Yatsenko and E.A. Saltykova, Thermodynamkc Properties of Molten Lithium-Thallium Alloys, Zh. Fiz. Khim., 1975, 49(2), p 507-508 (in Russian); TR: Russ. J. Phys. Chem., 1975, 49(2), 292-293

  18. N.G. Chekoev, A.G. Morachevskii and A.I. Demdov, Thermodynamic Properties of Liquid Lithium-Thallium Alloys, Zh. Fiz. Khim., 1977, 51(4), p 105 (in Russian); TR: Russ. J. Phys. Chem., 1977, 51(4), p 606

  19. W. Gąsior, G. Schwitzgebel, and H. Ruppersberg, Badania Termodynamiczne Cieklych Lit-Tal (Thermodynamic Study of Liquid Lithium-Thallium Solutions), Arch. Metall., 1994, 39(1), p 25-33

    Google Scholar 

  20. O. Kubaschewski, The Thermochemistry of Alloys. IX, Z. Elektrochem. Angew. Phys. Chem., 1941, 47(9), p 623-630 (in German)

    Google Scholar 

  21. F. Sommer, B. Fischer and B. Predel, Determination of the formation enthalpies of some alloys of lithium with In, Tl, Sn, Pb and Bi, in H.U. Borgstedt (eds.) Material Behavior and Physical Chemistry in Liquid Metal Systems, Plenum Press, 1982, p 395-400

  22. V.D. Bushmanov and S.P. Yatsenko, Thermodynamic Properties of the Binary Systems Formed by Lithium, Sodium and Potassium with Aluminium, Gallium, Indium and Thallium, Zh. Fiz. Khim., 1981, 55(11), p 2951-2952 (in Russian); TR: Russ. J. Phys. Chem., 55(11), p 1680-1681

  23. B. Predel and G. Oehme, Kalorimetrische Untersuchung flüssiger Lithium-Thallium-, Lithium-Indium- und Lithium-Wismuth-Legierungen (Calorimetric Study of Liquid Lithium-Thallium-, Lithium-Indium- and Lithium-Bismuth Alloys), Z. Metallk., 1979, 70(9), p 618-623 (in German)

    Google Scholar 

  24. C.W. Bale, A.D. Pelton and W.T. Thompson, FactSage 6.4, Ecole Polytechnique de Montreal, Canada, 2013. www.crct.polymtl.ca

  25. N.S. Kurnakow and N.A. Puschin, Über die Thalliumlegierungen (On Thallium Alloys), Z. Anorg. Chem., 1902, 30(1), p 87-108 (in German)

    Google Scholar 

  26. G. Grube and A. Schmidt, Elektrische Leitfähigkeit und Zustandsdiagramm bei binären Legierung. 19. Das System NatriumThallium (Electrical Conductivity and Phase Diagrams of Binary Alloys. 19. The System Sodium-Thallium), Z. Elektrochem., 1936, 42(4), p 201-209 (in German)

    Google Scholar 

  27. S.P. Yatsenko, K.A. Chuntonov, S.I. Alyamovskiii and E.N. Dieva, Construction of Phase Diagrams of Alkali Metals with Group IIIA Metals, Obshch. Zakonomern. Str. Diagramm Sost. Met. Sist., 1973, 55-59 (in Russian)

  28. H. Okamoto, Na-Tl (Sodium-Thallium), J. Phase Equilib., 2000, 21(3), p 315

    Article  Google Scholar 

  29. C.T. Heycock and F.H. Neville, The Lowering of the Freezing Point of Sodium by the Addition of Other Metals, J. Chem. Soc., 1889, 55, p 666-676

    Article  Google Scholar 

  30. G. Tamman, Zur Konstitution der Legierungen (The Constitution of Alloys), Z. Phys. Chem., 1889, 3(5), p 441-449 (in German)

    Google Scholar 

  31. B.N. Aleksandrov and N.V. Dalakova, Solubility of Different Metals in Solid Sodium and Potassium, Izv. Akad, Nauk SSSR, Metally, 1982, (1), p 133-140 (in Russian); TR: Russ. Metall., 1982, (1), p 117-121

  32. R. Novaković, G. Ghosh, H.L. Lukas and M.M. Ristić, Optimization of the Na-Tl System, Ber. Kernforschungsanlage Jülich, Jul-Conf-79, 1989, (Jülich), 1989, p 491-498

  33. T. Kleinstuber, Ph. D. Thesis, University of Műnchen (1961), in 1989 Novaković et al. [32] (points on graph) and elsewhere [68] (numerical data)

  34. J.D. Greiner, D.A. Hansen, and J.F. Smith, Magnetic Susceptibilities of Sodium-Thallium Alloys, J. Less-Common Met., 1969, 19(1), p 23-31

    Article  Google Scholar 

  35. S. Samson and D.A. Hansen, Complex Cubic A6B Compounds. 1. The Crystal Structure of Na6Tl, Acta Crystallogr. B, 1972, B28(Part 2), p 930-935

    Article  Google Scholar 

  36. L.H. Bennett, Nuclear Magnetic Resonance in Sodium Thallide, Acta Metall., 1966, 14(8), p 997-999

    Article  Google Scholar 

  37. D.A. Hansen and J.F. Smith, Structure and Bonding Model for Na2Tl, Acta Crystallogr. A, 1967, 22, p 836-845

    Article  Google Scholar 

  38. C.A. Kraus and H.F. Kurtz, The Reaction of Metals from their Salts by Means of other Metals in Liquid Ammonia Solution, J. Am. Chem. Soc., 1925, 47(1), p 43-60

    Article  Google Scholar 

  39. R. Kremann and P. Von Reininghaus, Das Elektromotorische Verhalten einiger binärer Metall-Legierungen. VI. (The Electromotive Behaviour of some Binary Alloys. VI.), Z. Metallk., 1920, 12, p 273-287 (in German)

  40. E. Zintl, J. Goubeau and W. Dullenkopf, Metalle und Legierungen. II Saltzartige Verbindungen und Intermetallische Phasen des Natriums in flüssigen Ammoniak (Metals and Alloys. II. Salt-like Compounds and Intermetallic Phases of Sodium in Liquid Ammonia), Z. Phys. Chem. A, 1931, 154(1-2), p 1-46 (in German)

  41. E. Zintl and W. Dullenkopf, Metalle und Legierungen. 4. Über den Gitterbau von NaTl und seine Beziehung zu den Strukturen vom Typus des β-Messings (Metals and Alloys. 4. Lattice Structure of NaTl and its Relation to Structures of the Beta-brass Type), Z. Phys. Chem. B, 1932, 16(2-3), 195-205 (in German)

  42. W. Klemm and H. Fricke, Über das magnetische Verhalten der intermetallischen Phases von NaTl-Typ (The Magnetic Behaviour of Intermetallic Phases of the NaTl Type), Z. Anorg. Allg. Chem., 1955, 282, p 162-168 (in German)

    Article  Google Scholar 

  43. A. Schneider and G. Heymer, Die Temperaturabhängigkeit der Molvolumina der Phasen NaTl und LiCd (The Temperature Dependence of the Molar Volume of the Phases NaTl and LiCd), Z. Anorg. Allg. Chem., 1956, 286, p 118-135 (in German)

    Article  Google Scholar 

  44. K. Kuriyama, S. Saito, and K. Iwamura, Ultrasonic Study on the Elastic Moduli of the NaTl (B32) Structure, J. Phys. Chem. Solids, 1979, 40(6), p 457-461

    Article  ADS  Google Scholar 

  45. M. Tadin, J. Schneider, H. Boysen, and F. Frey, Neutron- and X-ray Investigation of the Zintl Phases NaTl and LiAl at Temperatures up to 900 K, Mater. Sci. Forum, 1991, 79-82(EPDIC 1, Part 2), p 635-641

    Article  Google Scholar 

  46. R.F. Berger, S. Lee, J. Johnson, B. Nebgen, F. Sha, and J. Xu, The Mystery of Perpendicular Fivefold Axes and the Fourth Dimension in Intermetallic Structures, Chem. – A Eur. J., 2008, 14(13), p 3908-3930

    Article  Google Scholar 

  47. V.A. Zhdanov and R.P. Mar’yasova, Theory of Crystal Lattices of the NaTl Type, Zh. Fiz. Khim., 1953, 27(2), p 210-216 (in Russian)

    Google Scholar 

  48. L.F. Kozin, M.B. Dergacheva, and G.R. Khobdabergenova, Study of Thermodynamic Properties of Molten Alloys of Alkali Metals with In, Tl and Hg, Tr. In-ta Organ. Kataliza Elektrokhim. KazSSR, 1981, 25, p 36-91 (in Russian)

    Google Scholar 

  49. A.G. Morachevskii and E.A. Maiorova, Thermodynamic Analysis of Interaction Between Components in Liquid Alloys in the System Sodium-Thallium, Zh. Prikl.Khim. (S.-Peterburg), 1999, 72(6), p 910-913 (in Russian); TR: Russ. J. Appl. Chem., 1999, 72(6), p 952-956

  50. A. Schneider and O. Hilmer, Wärmeinhalte und Schmelzenentropien von NaTl-Phasen (Heat Content and Entropy of Fusion of NaTl Phases), Z. Anor. Allg. Chem., 1956, 286(3-4), p 98-116 (in German)

    Google Scholar 

  51. A.G. Morachevskii and A.F. Alabyshev, Reaction of Sodium with Molten Thallium Alloys, Izv. Vyssh. Uchebn. Zaved. Tsvetn Metall., 1960, 3(5), p 105-107 (in Russian)

    Google Scholar 

  52. P. Gray, N.E. Cusack, S. Tamaki, and Y. Tsuchiya, Thermodynamic Properties of Liquid NaTl, Phys. Chem. Liq., 1980, 9, p 307-322

    Article  Google Scholar 

  53. M. Iwase, S. Sugino, E. Ichise, and Y. Waseda, Determination of the Thermodynamic Properties of Liquid Na-Tl, Na-Pb and Na-Bi Alloys by emf Measurements, High Temp. Mater. Process., 1984, 6(3-4), p 143-153

    Google Scholar 

  54. A.G. Morachevskii, S.I. Statsenko and V.B. Busse-Machukas, Enthalpy of Mixing in the System Sodium-Thallium, Zh. Fiz. Khim., 1966, 40(10), p 2605-2607 (in Russian); TR: Russ. J. Phys. Chem., 1966, 40(10), p 1395-1397

  55. N.S. Kurnakov and N.A. Pushin, Alloys of Thallium, Zh. Russ. Fiz.-Khim. Obshch., 1901, 33, p 565-588 (in Russian)

    Google Scholar 

  56. R. Thümmel and W. Klemm, Das Verhalten der Alkalimetalle zu den Metallen der Gruppe IIIB (Behaviour of Intermetallic Compounds of Alkali Metals with Group IIIA Metals), Z. Anorg. Allg. Chem., 1970, 376(1), p 44-63 (in German)

    Article  Google Scholar 

  57. K.A. Chuntonov and S.P. Yatsenko, Immiscibility in Binary Alloy Melts of Rubidium with p-Elements, Zh. Fiz. Khim., 1978, 52(9), p 2145-2154 (in Russian); TR: Russ. Phys. Chem., 1978, 52(9), p 1241-1246

  58. S. Kaskel and J.D. Corbett, Synthesis and Structure of K10Tl7: The First Binary Trielide Containing Naked Pentagonal Bipyramidal Tl7 Clusters, Inorg. Chem., 2000, 39(4), p 778-782

    Article  Google Scholar 

  59. R. Kremann and Ernst Pressfreund, Das elektromotorische Verhalten einiger binärer Metall-Legierungen. XV. (The Electromotive Behaviour of some Binary Alloys. XV.), Z. Metallk., 1921, 13, p 19-29 (in German)

  60. Z. Dong and J.D. Corbett, Synthesis, Structure and Bonding of the Novel Cluster Compound KTl with Isolated Tl6 6− Ions, J. Am. Chem. Soc., 1993, 115(24), p 11299-11303

    Article  Google Scholar 

  61. G. Cordier and V. Müller, Crystal Structure of Octapotassium Undecathallide, K8Tl11, Z. Kristallogr., 1992, 198(3-4), p 281-282

    Article  Google Scholar 

  62. W. Blase, G. Cordier, V. Mueller, U. Haeussermann, R. Nesper, and M. Somer, Preparation and Crystal Structures of Rb8In11, K8Tl11 and Rb8Tl11. Band Structure Calculations on K8In11, Z. Naturforsch. B, 1993, 48(6), p 746-750

    Article  Google Scholar 

  63. Z.-C. Dong and J.D. Cordier, A8Tl11 (A = K, Rb or Cs) Phases with Hypoelectronic Tl11 7− Cluster Anions: Syntheses, Structure, Bonding and Properties, J. Clust. Sci., 1995, 6(1), p 187-201

    Article  Google Scholar 

  64. G. Cordier and V. Müller, Darstellung und Kristallstruktur von K49Tl108 (Preparation and Crystal Structure of K49Tl108), Z. Naturforschung B, 1993, 48B(8), p 1035-1040 (in German)

    Google Scholar 

  65. G. Cordier, V. Müller, and R. Fröhlich, Crystal Structure of Potassium Thallide (49/108), K49 Tl108, Z. Kristallogr., 1993, 203(1), p 148-149

    Google Scholar 

  66. S. Kaskel, Z.-C. Dong, M.T. Klem, and J.D. Corbett, Synthesis and Structure of the Metallic K6Tl17: A Layered Tetrahedral Star Structure Related to That of Cr3Si, Inorg. Chem., 2003, 42(6), p 1835-1841

    Article  Google Scholar 

  67. G. Bruzzone, The DI 3 Structure Type in Intermetallic Compounds, Acta Crystallogr. B, 1969, B25, p 1206-1207

    Article  Google Scholar 

  68. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Materials Park, 1973

    Google Scholar 

  69. S. Aronson and S. Lemont, Thermodynamic Properties of Potassium + Thallium Liquid Alloys, J. Chem. Thermodyn., 1973, 5(2), p 155-162

    Article  Google Scholar 

  70. J. Evers and G. Oehlinger, After More Than 60 Years, a New NaTl Type Zintl Phase: KTl at High Pressure, Inorg. Chem., 2000, 39(4), p 628-629

    Article  Google Scholar 

  71. V.D. Bushmanov and S.P. Yatsenko, Immiscibility in Binary Systems of Cesium with Aluminium, Gallium, Indium and Thallium, Izv. Alkad. Nauk SSSR, Metally, 1981, (5), p 202-204 (in Russian); TR: Russ. Metall., 1981, (5), 157-160

  72. S.A. Van der Aart, P. Verkerk, L.A. De Graaf, W. Van der Lugt, Y.S. Badyal, and V.W.J. Verhoevan, Large Clusters in Liquid Potassium-Thallium Alloys, Phys. B, 1997, 234-236, p 362-363

    Article  ADS  Google Scholar 

  73. P. Villars, Pearson’s Handbook of Crystallization Data for Intermediate Phases, Vol 2, American Society for Metals, Materials Park, 1997, p 2458

    Google Scholar 

  74. H. Pauly, A. Weiss, and H. Witte, Phasenbreite und Valenzelektronenkonzentration (VEK) in den ternären kubischen Zintlphasen vom NaTl-Typ (Phase Width and Valence Electron Concentration (VEC) in the Ternary Cubic Zintl Phases of the NaTl Type), Z. Metallk., 1968, 59(7), p 554-558 (in German)

    Google Scholar 

  75. R. Ferro, Ricerche sulle leghe dei metalli nobili con gli elementi più elettropositivi (Studies on Alloys of Noble Metals with More Electropositive Elements), Atti Accad. Naz. Lincei, Sci. Fis. Mat. Natur. Rend., 1966, 41(5), p 348-350, in Italian

  76. K. Hauffe and A.L. Vierk, Aktivitätsmessungen an flüssigen Natrium-Legierungen mit starker Abweichen vom idealen Verhalten (Activity Measurements in Liquid Sodium Alloys with Strong Deviations from Ideal Behaviour), Z. Elektrochem., 1949, 53(3), p 151-161 (in German)

    Google Scholar 

  77. E.A. Maiorova and A.G. Morachevskii, Thermodynamic Properties of Dilute Solutions of Sodium in Liquid Thallium, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1976, (3), p 58-60 (in Russian); TR: Sov. Non-Ferrous Met. Res., 1976, (3), p 112-113

  78. A.G. Morachevskii and E.A. Maiorova, Thermodynamic Properties of Dilute Solutions of Sodium in Different Molten Metals and in Chalcogens, Tez. Nauchn. Soobshch. Vses. Konf. Str. Svoistvam Met. Shlakovykh Rasplavov, 3rd, 1978, 2, p 150-153 (in Russian)

  79. H.E. Bartlett, A.J. Neethling, and P. Crowther, A Comparison of Entropies for Several Molten Binary Sodium Alloys, J. Chem. Thermodyn., 1970, 2(4), p 583-590

    Article  Google Scholar 

  80. A.F. Alabyshev, M.F. Lantratov and A.G. Morachevskii, Thermodynamic Properties of Liquid Alkali Metal-Containing Alloys, Usp. Khim., 27(8), p 921-037 (in Russian); TR: Elmar K. Wilip, ANL-TRANS-329, Argonne National Laboratory, Argonne, Illinois (1966)

  81. M.F. Lantratov and A.F. Alabysheva, Thermodynamc Properties of Liquid Metallic Solutions Formed by Potassium with Thallium, Lead and Bismuth, Zh. Fiz. Khim., 1959, 33(11), p 2429-2434 (in Russian); TR: Russ. J. Phys. Chem., 1959, 33(11), p 460-463

  82. M.F. Lantratov and E.V. Tsarenko, Thermodynamic Properties of Liquid Metallic Solutions. The Potassium-Thallium System, Zh. Fiz. Khim., 1959, 33(8), p 1792-1797 (in Russian); TR: Russ. J. Phys. Chem., 33(8), p 161-164

  83. M.B. Dergacheva, E.G. Shatrova and G.R. Khobdabergenova, Thermodynamics of Alkali Metal-Thallium Melts, Izv. Akad. Nauk KazSSR, Ser. Khim., 1991, (1), p 34-38 (in Russian)

  84. P. Verkerk, R. Xu, W.S. Howells, G.A. De Wijs, and W. Van der Lugt, Clusters in Liquid K-Tl and Cs-Tl Alloys, J. Phys. Condens. Matter, 1994, 6(Suppl. 23A), p A255-A260

    Article  Google Scholar 

  85. S.A. Van der Aart, W. Van der Lugt, Y.S. Badyal, and P. Verkerk, Swimming Clusters in Thallium-Rich Liquid Cesium-Thallium Alloys, J. Non-Cryst. Solids, 1999, 250-252(Part 1), p 241-244

    Article  Google Scholar 

  86. Z.-C. Dong and J.D. Corbett, Unusual Icosahedral Cluster Compounds: Open-Shell Na4A6Tl13 (A = K, Rb, Cs) and the Metallic Zintl Phase Na3K8Tl13 (How Does Chemistry Work in Solids?), J. Am. Chem. Soc., 1995, 117(24), p 6447-6455

    Article  Google Scholar 

  87. J.D. Corbett, Polyanionische Cluster und Netzwerke der frühen p-Metalle im Festkörper: jenseits der Zintl-Grenze (Polyanionic Clusters and Networks of the Early p-Element Metals in the Solid State: Beyond the Zintl Boundary), Angew. Chem., 2000, 112(4), p 682-704; TR: Angew. Chem. Int. Ed., 2000, 39(4), p 670-690

  88. F. Wang, U. Wedig, D.L.V.K. Prasad, and M. Jansen, Deciphering the Chemical Bonding in Anionic Thallium Clusters, J. Am. Chem. Soc., 2012, 134(48), p 19884-19894

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Sangster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangster, J. The Systems Li-Tl, Na-Tl and K-Tl. J. Phase Equilib. Diffus. 39, 74–86 (2018). https://doi.org/10.1007/s11669-017-0609-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0609-9

Keywords

Navigation