Skip to main content
Log in

Design Optimization of Composite Prosthetic Tubes Using GA-ANN Algorithm Considering Tsai-Wu Failure Criteria

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The investigation of possible failures in composite materials is a matter of very great importance, and the Tsai-Wu criterion is an effective criterion for analyzing those flaws in anisotropic materials and defining whether the material at a given load will or will not suffer structural failure. In this study, an optimization procedure is proposed to minimize the maximum value of Tsai-Wu of laminated composite tubes subject to axial loading. Artificial neural networks and genetic algorithms are chosen as optimization tools. The results of this study show that the developed algorithm converges faster. Then, the maximum Tsai-Wu value is used as the objective function and the fiber orientations are the constraints in the optimization process. The results yielded by them are compared and discussed. Optimal results are compared with respect to the usual initial design. The design approach is recommended for structures where composites are the key load-carrying members such as orthopedic prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.A.R. Brito Jr., E.M. Bezerra, L.C. Pardini, A.C. Ancelotti Jr., M.S. Pereira, E. Barros, L.R. Camargo, Redes neurais artificiais aplicadas para predição do comportamento dinâmico-mecânico de compósitos de matriz epóxi reforçados com fibras de carbono. Revista matéria 12(2), 346–357 (2007)

    Article  Google Scholar 

  2. F.C. Campbell, Structural Composite Materials (ASM Internacional, New York, 2010)

    Google Scholar 

  3. E.K.P. Chong, S.H. Zak, An Introduction to Optimization (Wiley, Etobicoke, 2001)

    Google Scholar 

  4. D.I.G. Costa, E.L. Albuquerque, A. Reis, G. Panosso, P. Sollero, Análise numérica de falhas em laminados usando um critério baseado em fenômenos físicos. Mecànica Computaciona 29(51), 5173–5187 (2010)

    Google Scholar 

  5. I.M. Daniel, O. Ishai, I.M.I. Daniel, Engineering Mechanics of Composite Materials, vol. 3 (Oxford University Press, New York, 1994), p. 256

    Google Scholar 

  6. A. De Fenza, A. Sorrentino, P. Vitiello, Application of Artificial Neural Networks and Probability Ellipse methods for damage detection using Lamb waves. Compos. Struct. 133, 390–403 (2015)

    Article  Google Scholar 

  7. Kalyanmoy Deb, An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2), 311–338 (2000)

    Article  Google Scholar 

  8. Hubert Debski, Jozef Jonak, Failure analysis of thin-walled composite channel section columns. Compos. Struct. 132, 567–574 (2015)

    Article  Google Scholar 

  9. K. Deep, K.P. Singh, M.L. Kansal, C. Mohan, A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 212(2), 505–518 (2009)

    Google Scholar 

  10. S. Haykin, Neural Networks and Learning Machines (Pearson, New York, 2009)

    Google Scholar 

  11. A.K. Kaw, Mechanics of Composite Materials (CRC Press, Boca Raton, 2005)

    Google Scholar 

  12. M. Koc, F.O. Sonmez, N. Ersoy, K. Cinar, Failure behavior of composite laminates under four-point bending. J. Compos. Mater. 50(26), 3679–3697 (2016)

    Article  Google Scholar 

  13. A.J. Kolios, Stefano Proia, Evaluation of the reliability performance of failure criteria for composite structures. World J. Mech. 2(03), 162 (2012)

    Article  Google Scholar 

  14. Z.L. Kovács, Redes neurais artificiais (Editora Livraria da Fisica, Sao Paulo, 2002)

    Google Scholar 

  15. U.K. Mallela, A. Upadhyay, Buckling load prediction of laminated composite stiffened panels subjected to in-plane shear using artificial neural networks. Thin-Walled Struct. 102, 158–164 (2016)

    Article  Google Scholar 

  16. A.T.D. Martins, Projeto e fabricação de tubos compósitos em fibras de carbono/epóxi para próteses transtibiais por moldagem com bladder. Dissertação (Mestrado), Engenharia Mecânica, Universidade Federal de Itajubá (2015)

  17. S. Mazumdar, Composites manufacturing materials, product, and process engineering (CRC Press, Boca Raton, 2001)

    Book  Google Scholar 

  18. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1998)

    Google Scholar 

  19. D.C. Montgomery, E.A. Peck, G. Geoffrey-Vining, Introduction to Linear Regression Analysis (Wiley, Hoboken, 2015)

    Google Scholar 

  20. P. Selva, O. Cherrier, V. Budinger, F. Lachaud, J. Morlier, Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks. Eng. Struct. 56, 794–804 (2013)

    Article  Google Scholar 

  21. S.W. Tsai, E.M. Wu, A general theory of strength for anisotropic materials. J. Compos. Mater. 5(1), 58–80 (1971)

    Article  Google Scholar 

  22. C. Velmurugan, V. Muthukumaran, K. Ragupathy, S. Ragunath, Modeling volume loss of heat treated Al 6061 composites using an artificial neural network. Procedia Mater. Sci. 5, 31–40 (2014)

    Article  Google Scholar 

  23. G.Z. Voyiadjis, P.I. Kattan, Mechanics of composite materials with MATLAB (Springer, USA, 2005)

    Google Scholar 

  24. X.-S. Yang, Engineering optimization: an introduction with metaheuristic applications (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  25. B. Yegnanarayana, Artificial Neural Networks (PHI Learning Pvt. Ltd., New York, 2009)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Brazilian agency CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico and CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Ferreira Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, G.F., Diniz, C.A., da Cunha, S.S. et al. Design Optimization of Composite Prosthetic Tubes Using GA-ANN Algorithm Considering Tsai-Wu Failure Criteria. J Fail. Anal. and Preven. 17, 740–749 (2017). https://doi.org/10.1007/s11668-017-0304-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-017-0304-5

Keywords

Navigation