Skip to main content
Log in

Development of Single-Stage TiNbMoMnFe High-Entropy Alloy Coating on 304L Stainless Steel Using HVOF Thermal Spray

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

A Correction to this article was published on 07 February 2024

This article has been updated

Abstract

Stainless steels are considered to be corrosion resistant; however, the performance of the material is affected under long-term or extreme conditions. The development of high-entropy alloys (HEAs) has opened avenues to enhance a useful life even under extreme environmental conditions. However, the fabrication of HEAs involves multiple-stage (milling, compaction, sintering, and inert environment) manufacturing processes. The present study explores the single-stage process development of a TiNbMoMnFe high-entropy alloy (HEA) coating on 304L stainless steel substrate using a high-velocity oxy-fuel (HVOF) thermal spray technique. Prior to HVOF coating, the feedstock powders were milled for 5, 10, and 15 h, respectively. The coated surfaces were analyzed for morphology, wettability, microstructure, corrosion resistance, presence of different phases and their distribution. Scanning electron microscopy (SEM), microhardness tester, 3D optical profilometry, and x-ray diffraction (XRD) were used to get different metallurgical and mechanical characteristics. The results indicated that 15-h milled powder-coated substrate exhibited higher corrosion resistance than the other coatings as well as the 304L stainless steel substrate. Chemically stable BCC phase was observed in 15-h milled powder-coated substrates. Moreover, the microhardness, surface roughness, and hydrophobicity of the coated surface were also improved with an increased milling rate. Thus, corrosion resistance of HEA coating can be optimized by a good selection of milling time of powder feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. R.M. Davison, T.R. Laurin, J.D. Redmond, H. Watanabe, and M. Semchyshen, A Review of Worldwide Developments in Stainless Steels, Mater. Des., 1986, 7(3), p 111-119.

    Article  CAS  Google Scholar 

  2. K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R Rep., 2009, 65(4), p 39-104.

    Article  Google Scholar 

  3. M. Saravanan, A. Devaraju, N. Venkateshwaran, A. Krishnakumari, and J. Saarvesh, A Review on Recent Progress in Coatings on AISI Austenitic Stainless Steel, Mater. Today Proc., 2018, 5(6), p 14392-14396.

    Article  CAS  Google Scholar 

  4. E.H. Phelps, R.T. Jones, and H.P. Leckie, Review of the Application of Stainless Steels in Desalination Equipment, Electrochem. Soc. J., 1969, 116(6), p 213-217.

    Article  ADS  Google Scholar 

  5. K.S. Prasad, C.S. Rao, and D.N. Rao, A Review on Welding of AISI 304L Austenitic Stainless Steel, J. Manuf. Sci. Prod., 2014, 14(1), p 1-11.

    CAS  Google Scholar 

  6. S. Papavinasam, The Main Environmental Factors Influencing Corrosion, Corrosion Control in the Oil and Gas Industry, 1st ed., S. Papavinasam Ed., Gulf Professional Publishing, Houston, 2014, p 179-247

    Chapter  Google Scholar 

  7. Z. Wang, E.M. Paschalidou, A. Seyeux, S. Zanna, V. Maurice, and P. Marcus, Mechanisms of Cr and Mo Enrichments in the Passive Oxide Film on 316L Austenitic Stainless Steel, Front. Mater., 2019, 6(232), p 1-12.

    Google Scholar 

  8. A. Bahrami and P. Taheri, A Study on the Failure of AISI 304 Stainless Steel Tubes in a Gas Heater Unit, Metals, 2019, 9(9), p 969.

    Article  CAS  Google Scholar 

  9. X.L. Yang, Y. Gong, Q. Tong, and Z.G. Yang, Failure Analysis on Abnormal Bursting of Heat Transfer Tubes in Spiral-Wound Heat Exchanger for Nuclear Power Plant, Eng. Fail. Anal., 2020, 108, p 104298.

    Article  CAS  Google Scholar 

  10. Z.Y. Li, Z.B. Cai, T. Zhou, X.Y. Shen, and G.H. Xue, Characteristics and Formation Mechanism of Oxide Film on 304 Stainless Steel in High Temperature Water, Mater. Chem. Phys., 2019, 222, p 267-274.

    Article  CAS  Google Scholar 

  11. J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chou, Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements, Metall. Mater. Trans. A, 2004, 35, p 2533-2536.

    Article  Google Scholar 

  12. J.W. Ye, J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299-274.

    Article  Google Scholar 

  13. T.M. Hung and J.W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett., 2014, 2(3), p 107-123.

    Article  Google Scholar 

  14. B. Fotovvati, N. Namdari, and A. Dehghanghadikolaei, On Coating Techniques for Surface Protection: A Review, J. Manuf. Mater. Process., 2019, 3, p 28.

    CAS  Google Scholar 

  15. X. Wang, W. Guo, and Y. Fu, High-Entropy Alloys: Emerging Materials for Advanced Functional Applications, J. Mater. Chem. A, 2021, 9(2), p 663-701.

    Article  CAS  Google Scholar 

  16. C. Shang, E. Axinte, W. Ge, Z. Zhang, and Y. Wang, High-Entropy Alloy Coatings with Excellent Mechanical, Corrosion Resistance and Magnetic Properties Prepared by Mechanical Alloying and Hot Pressing Sintering, Surf. Interfaces, 2017, 9(6), p 36-43.

    Article  CAS  Google Scholar 

  17. A. Meghwal, A. Anupam, B.S. Murty, C.C. Berndt, R.S. Kottada, and A.S.M. Ang, Thermal Spray High-Entropy Alloy Coatings: A Review, J. Therm. Spray Technol., 2020, 29(5), p 857-893.

    Article  ADS  CAS  Google Scholar 

  18. J. Li, Y. Huang, X. Meng, and Y. Xie, A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment, Adv. Eng. Mater., 2019, 19(92), p 1-27.

    ADS  Google Scholar 

  19. H. Liang, H. Yao, D. Qiao, S. Nie, Y. Lu, D. Deng, Z. Cao, and T. Wang, Microstructures and Wear Resistance of AlCrFeNi2W0.2Nbx High-Entropy Alloy Coatings Prepared by Laser Cladding, J. Therm. Spray Technol., 2019, 28(6), p 1318-1329.

    Article  ADS  CAS  Google Scholar 

  20. F. Ghadami and A.S.R. Aghdam, Improvement of High Velocity Oxy-Fuel Spray Coatings by Thermal Post-treatments: A Critical Review, Thin Solid Films, 2019, 678, p 42-52.

    Article  ADS  CAS  Google Scholar 

  21. A.M. Panindre, Y. Khalifa, C.D. Taylor, and G.S. Frankel, Corrosion of Ni-Fe-Cr-Mo-W-X Multi-principal Element Alloys, J. Electrochem. Soc., 2021, 168(3), p 031513.

    Article  ADS  CAS  Google Scholar 

  22. M. Löbel, T. Lindner, T. Mehner, and T. Lampke, Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF, Coatings, 2017, 7(9), p 144.

    Article  Google Scholar 

  23. Q. Fang, Y. Chen, J. Li, Y. Liu, and Y. Liu, Microstructure and Mechanical Properties of FeCoCrNiNbX High-Entropy Alloy Coatings, Phys. B Condens. Matter, 2018, 550, p 112-116.

    Article  ADS  CAS  Google Scholar 

  24. Z. Wei et al., Ultrasonic Cavitation Erosion Behaviors of High-Velocity Oxygen-Fuel (HVOF) Sprayed AlCoCrFeNi High-Entropy Alloy Coating in Different Solutions, Surf. Coat. Technol., 2021, 409, p 126899.

    Article  CAS  Google Scholar 

  25. W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, and P.K. Liaw, Mechanical Behavior of High-Entropy Alloys, Prog. Mater. Sci., 2021, 118, p 100777.

    Article  CAS  Google Scholar 

  26. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie, Development and Exploration of Refractory High Entropy Alloys—A Review, J. Mater. Res., 2018, 33(19), p 3092-3128.

    Article  ADS  CAS  Google Scholar 

  27. Y. Huang, Z. Wang, Z. Xu, X. Zang, and X. Chen, Microstructure and Properties of TiNbZrMo High Entropy Alloy Coating, Mater. Lett., 2021, 285, p 129004.

    Article  CAS  Google Scholar 

  28. P.K. Sarswat, S. Sarkar, A. Murali, W. Huang, W. Tan, and M.L. Free, Additive Manufactured New Hybrid High Entropy Alloys Derived from the AlCoFeNiSmTiVZr System, Appl. Surf. Sci., 2019, 476, p 242-258.

    Article  ADS  CAS  Google Scholar 

  29. S.W. McAlpine, J.V. Logan, and M.P. Short, Predicting Single Phase Stability and Segregation in the NbMoTaTi-(W, V) High Entropy Alloy System with the Vacancy Exchange Potential, Scr. Mater., 2021, 191, p 29-33.

    Article  CAS  Google Scholar 

  30. M.J.R. Haché, C. Cheng, and Y. Zou, Nanostructured High-Entropy Materials, J. Mater. Res., 2020, 35(8), p 1051-1075.

    Article  ADS  Google Scholar 

  31. N. Ma, S. Liu, W. Liu, L. Xie, D. Wei, L. Wang, L. Li, B. Zhao, and Y. Wang, Research Progress of Titanium-Based High Entropy Alloy: Methods, Properties, and Applications, Front. Bioeng. Biotechnol., 2020, 8, p 1303.

    Article  Google Scholar 

  32. S.P. Wang and J. Xu, TiZrNbTaMo High-Entropy Alloy Designed for Orthopedic Implants: As-Cast Microstructure and Mechanical Properties, Mater. Sci. Eng. C, 2017, 73, p 80-89.

    Article  ADS  CAS  Google Scholar 

  33. C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, and J.W. Yeh, Enhanced Mechanical Properties of HfMoTaTiZr and HfMoNbTaTiZr Refractory High-Entropy Alloys, Intermetallics, 2015, 62, p 76-83.

    Article  CAS  Google Scholar 

  34. Y. Guo and Q. Liu, MoFeCrTiWAlNb Refractory High-Entropy Alloy Coating Fabricated by Rectangular-Spot Laser Cladding, Intermetallics, 2018, 102, p 78-87.

    Article  CAS  Google Scholar 

  35. X.H. Yan, J.S. Li, W.R. Zhang, and Y. Zhang, A Brief Review of High Entropy Films, Mater. Chem. Phys., 2018, 210, p 12-19.

    Article  CAS  Google Scholar 

  36. L.R. Shaginyan, V.F. Gorban’, N.A. Krapivka, S.A. Firstov, and I.F. Kopylov, Properties of Coatings of the Al-Cr-Fe-Co-Ni-Cu-V High Entropy Alloy Produced by the Magnetron Sputtering, J. Superhard Mater., 2016, 38, p 25-33.

    Article  Google Scholar 

  37. D.C. Tsai, Z.C. Chang, B.H. Kuo, M.H. Shiao, S.Y. Chang, and F.S. Shieu, Structural Morphology and Characterization of (AlCrMoTaTi)N Coating Deposited via Magnetron Sputtering, Appl. Surf. Sci., 2013, 282, p 789-797.

    Article  ADS  CAS  Google Scholar 

  38. C.C. Yang, J.L. Hang Chau, C.J. Weng, C.S. Chen, and Y.H. Chou, Preparation of High-Entropy AlCoCrCuFeNiSi Alloy Powders by Gas Atomization Process, Mater. Chem. Phys., 2017, 202, p 151-158.

    Article  CAS  Google Scholar 

  39. O.T. Onawale, P.V. Cobbinah, R.A. Nzeukou, and W.R. Matizamhuka, Synthesis Route, Microstructural Evolution, and Mechanical Property Relationship of High-Entropy Alloys (HEAs): A Review, Materials, 2021, 14, p 3065.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. J.M. Torralba, P. Alvaredo, and A. García-Junceda, High-Entropy Alloys Fabricated via Powder Metallurgy. A Critical Review, Powder Metall., 2019, 62(2), p 84-114.

    Article  ADS  CAS  Google Scholar 

  41. M. Vaidya, G.M. Muralikrishna, and B.S. Murty, High-Entropy Alloys by Mechanical Alloying: A Review, J. Mater. Res., 2019, 34(5), p 664-686.

    Article  ADS  CAS  Google Scholar 

  42. A. Arab, Y. Guo, Q. Zhou, and P. Chen, Fabrication of Nanocrystalline AlCoCrFeNi High Entropy Alloy Through Shock Consolidation and Mechanical Alloying, Entropy, 2019, 21(9), p 880.

    Article  ADS  CAS  PubMed Central  Google Scholar 

  43. P.F. Yu, L.J. Zhang, H. Cheng, H. Zhang, M.Z. Ma, Y.C. Li, G. Li, P.K. Liaw, and R.P. Liu, The High-Entropy Alloys with High Hardness and Soft Magnetic Property Prepared by Mechanical Alloying and High-Pressure Sintering, Intermetallics, 2016, 70, p 82-87.

    Article  CAS  Google Scholar 

  44. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, and H.R. Ammar, Manufacturing Methods, Microstructural and Mechanical Properties Evolutions of High-Entropy Alloys: A Review, Met. Mater. Int., 2020, 26(8), p 1099-1133.

    Article  Google Scholar 

  45. S. Kamnis and S. Gu, Numerical Modelling of Propane Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun, Chem. Eng. Process., 2006, 45(4), p 246-253.

    Article  CAS  Google Scholar 

  46. S. Zhu, Z. Zhang, B. Zhang, Y. Yu, Z. Wang, X. Zhang, and B. Lu, Microstructure and Properties of Al2O3-13 wt.%TiO2-Reinforced CoCrFeMnNi High-Entropy Alloy Composite Coatings Prepared by Plasma Spraying, J. Therm. Spray Technol., 2021, 30(3), p 772-786.

    Article  ADS  CAS  Google Scholar 

  47. W. Li, P. Liu, and P.K. Liaw, Microstructures and Properties of High-Entropy Alloy Films and Coatings: A Review, Mater. Res. Lett., 2018, 6, p 199-229.

    Article  CAS  Google Scholar 

  48. A. Gupta and D. Kumar, Development of Al2O3 Based Hybrid Ceramic Matrix Composite Coating to Mitigate the Erosive Wear of Advanced Steel, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2021, 235(4), p 752-762.

    CAS  Google Scholar 

  49. J. Pulsford, S. Kamnis, J. Murray, M. Bai, and T. Hussain, Effect of Particle and Carbide Grain Sizes on a HVOAF WC-Co-Cr Coating for the Future Application on Internal Surfaces: Microstructure and Wear, J. Therm. Spray Technol., 2018, 27, p 207-219.

    Article  ADS  CAS  Google Scholar 

  50. Q. Liu, G. Wang, X. Sui, Y. Xu, Y. Liu, and J. Yang, Ultra-Fine Grain TixVNbMoTa Refractory High-Entropy Alloys with Superior Mechanical Properties Fabricated by Powder Metallurgy, J. Alloys Compd., 2021, 865, p 158592.

    Article  CAS  Google Scholar 

  51. Z. Gu, P. Mao, Y. Gou, Y. Chao, and S. Xi, Microstructure and Properties of MgMoNbFeTi2Yx High Entropy Alloy Coatings by Laser Cladding, Surf. Coat. Technol., 2020, 402, p 126303.

    Article  CAS  Google Scholar 

  52. C. Li, J. Zhang, J. Han, and B. Yao, A Numerical Solution to the Effects of Surface Roughness on Water-Coal Contact Angle, Sci. Rep., 2021, 11, p 459.

    Article  PubMed  PubMed Central  Google Scholar 

  53. M.H. Zhao, X.P. Chen, and Q. Wang, Wetting Failure of Hydrophilic Surfaces Promoted by Surface Roughness, Sci. Rep., 2014, 4(6), p 6-10.

    Google Scholar 

  54. Y.Q. Jiang, J. Li, Y.F. Juan, Z.J. Lu, and W.L. Jia, Evolution in Microstructure and Corrosion Behavior of AlCoCrxFeNi High-Entropy Alloy Coatings Fabricated by Laser Cladding, J. Alloys Compd., 2019, 854, p 157140.

    Google Scholar 

  55. A. Mazzarolo, M. Curioni, A. Vicenzo, P. Skeldon, and G.E. Thompson, Anodic Growth of Titanium Oxide: Electrochemical Behaviour and Morphological Evolution, Electrochim. Acta, 2012, 75, p 288-295.

    Article  CAS  Google Scholar 

  56. Y.W. Marsumi and A.W. Pramono, Influence of Niobium or Molybdenum in Titanium Alloy for Permanent Implant Application, Adv. Mater. Res., 2014, 900, p 53-63.

    Article  Google Scholar 

  57. S.Y. Yu, J.R. Scully, and C.M. Vitus, Influence of Niobium and Zirconium Alloying Additions on the Anodic Dissolution Behavior of Activated Titanium in HCl Solutions, J. Electrochem. Soc., 2001, 148(2), p B68.

    Article  CAS  Google Scholar 

  58. Y. Okazaki, A. Ito, T. Tateishi, and Y. Ito, Effect of Alloying Elements on Anodic Polarization Properties of Titanium Alloys in Acid Solutions, Mater. Trans., 1994, 35(1), p 58-66.

    Article  CAS  Google Scholar 

  59. A. Kania, M.M. Szindler, and M. Szindler, Structure and Corrosion Behavior of TiO2 Thin Films Deposited by ALD on a Biomedical Magnesium Alloy, Coatings, 2021, 11(1), p 70.

    Article  CAS  Google Scholar 

  60. S. Husain, M. Irfansyah, A. Riyanto, and S. Arjo, Synthesis and Characterization of Electrochemical Properties of Manganese Ferrite Nanoparticles ({MnFe2O4}) from Iron, Omega J. Fis. dan Pendidik. Fis., 2019, 5(1), p 15.

    Article  Google Scholar 

  61. L. Agusu, Alimin, L.O. Ahmad, M.Z. Firihu, S. Mitsudo, and H. Kikuchi, Crystal and Microstructure of MnFe2O4 Synthesized by Ceramic Method Using Manganese Ore and Iron Sand as Raw Materials, J. Phys. Conf. Ser., 2019, 1153(1), p 2-9.

    Google Scholar 

  62. J. Lv, W. Guo, T. Liang, and M. Yang, The Effects of Ball Milling Time and Surface Enriched Chromium on Microstructures and Corrosion Resistance of AISI 304 Stainless Steel, Mater. Chem. Phys., 2017, 197, p 79-86.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to BRNS, India (Project no. 34/14/01/2018-BRNS) for giving financial assistance for the HVOF coating unit and SERB, DST (CRG/2021/000754) for other financial support. The authors are also thankful to the Central Research Facility (CRF) and Nanoscale Research Facility (NRF) provided by the IIT Delhi, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on High Entropy Alloy and Bulk Metallic Glass Coatings. The issue was organized by Dr. Andrew S.M. Ang, Swinburne University of Technology; Prof. B.S. Murty, Indian Institute of Technology Hyderabad; Distinguished Prof. Jien-Wei Yeh, National Tsing Hua University; Prof. Paul Munroe, University of New South Wales; Distinguished Prof. Christopher C. Berndt, Swinburne University of Technology. The issue organizers were mentored by Emeritus Prof. S. Ranganathan, Indian Institute of Sciences.

The original online version of this article was revised: This article was originally published without the following Acknowledgments.

The authors are grateful to BRNS, India (Project no. 34/14/01/2018-BRNS) for giving financial assistance for the HVOF coating unit and SERB, DST (CRG/2021/000754) for other financial support. The authors are also thankful to the Central Research Facility (CRF) and Nanoscale Research Facility (NRF) provided by the IIT Delhi, New Delhi, India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhijith, N.V., Kumar, D. & Kalyansundaram, D. Development of Single-Stage TiNbMoMnFe High-Entropy Alloy Coating on 304L Stainless Steel Using HVOF Thermal Spray. J Therm Spray Tech 31, 1032–1044 (2022). https://doi.org/10.1007/s11666-021-01294-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01294-9

Keywords

Navigation