Skip to main content
Log in

Numerical Modeling of Suspension HVOF Spray

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A three-dimensional two-way coupled Eulerian-Lagrangian scheme is used to simulate suspension high-velocity oxy-fuel spraying process. The mass, momentum, energy, and species equations are solved together with the realizable k-ε turbulence model to simulate the gas phase. Suspension is assumed to be a mixture of solid particles [mullite powder (3Al2O3·2SiO2)], ethanol, and ethylene glycol. The process involves premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. One-step global reaction is used for each mentioned reaction together with eddy dissipation model to compute the reaction rate. To simulate the droplet breakup, Taylor Analogy Breakup model is applied. After the completion of droplet breakup, and solvent evaporation/combustion, the solid suspended particles are tracked through the domain to determine the characteristics of the coating particles. Numerical simulations are validated against the experimental results in the literature for the same operating conditions. Seven or possibly eight shock diamonds are captured outside the nozzle. In addition, a good agreement between the predicted particle temperature, velocity, and diameter, and the experiment is obtained. It is shown that as the standoff distance increases, the particle temperature and velocity reduce. Furthermore, a correlation is proposed to determine the spray cross-sectional diameter and estimate the particle trajectories as a function of standoff distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Fauchais, G. Montavon, R.S. Lima, and B.R. Marple, Engineering a New Class of Thermal Spray Nano-Based Microstructures from Agglomerated Nanostructured Particles, Suspensions and Solutions: An Invited Review, J. Phys. D, 2011, 44(9), p 093001

    Article  Google Scholar 

  2. P. Fauchais, G. Montavon, and G. Bertrand, From Powders to Thermally Sprayed Coating, J. Therm. Spray Technol., 2009, 19, p 56-80

    Article  Google Scholar 

  3. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2009, 19, p 226-239

    Article  Google Scholar 

  4. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203, p 2807-2829

    Article  Google Scholar 

  5. A. Klilinger, R. Gadow, G. Mauer, A. Guignard, R. Vaben, and D. Stover, Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20, p 677-695

    Article  Google Scholar 

  6. J. Oberste Berghaus, J.G. Legoux, C. Moreau, R. Hui, C. Deces-Petit, W. Qu, S. Yick, Z. Wang, R. Maric, and D. Ghosh, Suspension HVOF Spraying of Reduced Temperature Solid Oxide Fuel Cell Electrolytes, J. Therm. Spray Technol., 2008, 17, p 700-707

    Article  Google Scholar 

  7. S. Moghtadernejad, M. Tembely, M. Jadidi, N. Esmail, and A. Dolatabadi, Shear Driven Droplet Shedding and Coalescence on a Superhydrophobic Surface, Phys. Fluids, 2015, 27, p 032106

    Article  Google Scholar 

  8. S. Moghtadernejad, M. Mohammadi, M. Jadidi, M. Tembely, and A. Dolatabadi, Shear Driven Droplet Shedding on Surfaces with Various Wettabilities, SAE Int. J. Aerosp., 2013, 6, p 459-464

    Article  Google Scholar 

  9. S. Moghtadernejad, M. Jadidi, M. Tembely, and A. Dolatabadi, Shear driven rivulet dynamics on surfaces with various wettabilities, Proceedings of ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, Nov 14-20, 2014

  10. S. Moghtadernejad, M. Jadidi, M. Tembely, N. Esmail, and A. Dolatabadi, Concurrent Droplet Coalescence and Solidification on Surfaces with Various Wettabilities, J. Fluids Eng., 2015, 137, p 071302

    Article  Google Scholar 

  11. S. Moghtadernejad, M. Jadidi, N. Esmail, and A. Dolatabadi, Shear-Driven Droplet Coalescence and Rivulet Formation, Proc. Inst. Mech. Eng. Part. C J. Mech. Eng. Sci., 2015, doi:10.1177/0954406215590186

    Google Scholar 

  12. S. Moghtadernejad, “Dynamics of Droplet Shedding and Coalescence under the Effect of Shear Flow”, Ph.D. Thesis, Concordia University, Montreal, 2014

  13. A. Vardelle, C. Moreau, N.J. Themelis, and C. Chazelas, A Perspective on Plasma Spray Technology, Plasma Chem. Plasma Process., 2015, 35, p 491-509

    Article  Google Scholar 

  14. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Teneze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59

    Article  Google Scholar 

  15. J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26(4), p 371-391

    Article  Google Scholar 

  16. F.L. Toma, L.M. Berger, D. Jacquet, D. Wicky, I. Villaluenga, Y.R. de Miguel, and J.S. Lindelov, Comparative Study on the Photocatalytic Behaviour of Titanium Oxide Thermal Sprayed Coatings from Powders and Suspensions, Surf. Coat. Technol., 2009, 203, p 2150-2156

    Article  Google Scholar 

  17. A. Killinger, M. Kuhn, and R. Gadow, High-Velocity Suspension Flame Spraying (HVSFS), a New Approach Foe Spraying Nanoparticles with Hypersonic Speed, Surf. Coat. Technol., 2006, 201, p 1922-1929

    Article  Google Scholar 

  18. R. Gadow, A. Killinger, and J. Rauch, New Results in High Velocity Suspension Flame Spraying (HVSFS), Surf. Coat. Technol., 2008, 202, p 4329-4336

    Article  Google Scholar 

  19. R. Gadow, A. Killinger, and J. Rauch, Introduction to High-Velocity Suspension Flame Spraying (HVSFS), J. Therm. Spray Technol., 2008, 17, p 655-661

    Article  Google Scholar 

  20. M. Jadidi, S. Moghtadernejad, and A. Dolatabadi, A Comprehensive Review on Fluid Dynamics and Transport of Suspension/Liquid Droplets and Particles in High-Velocity Oxygen-Fuel (HVOF) Thermal Spray, Coatings, 2015, 5(4), p 576-645

    Article  Google Scholar 

  21. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, Chichester, 2008

    Book  Google Scholar 

  22. A. Dolatabadi, J. Mostaghimi, and V. Pershin, Effect of a Cylindrical Shroud on Particle Conditions in High Velocity Oxy-Fuel Spray Process, Sci. Technol. Adv. Mater., 2002, 3, p 245-255

    Article  Google Scholar 

  23. J.D. Anderson, Jr., Modern Compressible Flow with Historical Perspective, 2nd ed., McGraw-Hill, Singapore, 1990

    Google Scholar 

  24. M.L. Norman and K.A. Winkler, Supersonic Jets, Los Alamos Science, New Mexico, 1985

    Google Scholar 

  25. S.R. Turns, An Introduction to Combustion, Concepts and Applications, 2nd ed., McGraw-Hill, Boston, 2000

    Google Scholar 

  26. C.T. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles, CRC Press, Boca Raton, 1998

    Google Scholar 

  27. M. Taleby and S. Hossainpour, Numerical Investigation of High Velocity Suspension Flame Spraying, J. Therm. Spray Technol., 2012, 21, p 1163-1172

    Article  Google Scholar 

  28. E. Gozali, S. Kamnis, and S. Gu, Numerical Investigation of Combustion and Liquid Feedstock in High Velocity Suspension Flame Spraying Process, Surf. Coat. Technol., 2013, 228, p 176-186

    Article  Google Scholar 

  29. E. Gozali, M. Mahrukh, S. Gu, and S. Kamnis, Numerical Analysis of Multicomponent Suspension Droplets in High-Velocity Flame Spray Process, J. Therm. Spray Technol., 2014, 23, p 940-949

    Article  Google Scholar 

  30. E. Dongmo, A. Killinger, M. Wenzelburger, and R. Gadow, Numerical Approach and Optimization of the Combustion and Gas Dynamics in High Velocity Suspension Flame Spraying (HVSFS), Surf. Coat. Technol., 2009, 203, p 2139-2145

    Article  Google Scholar 

  31. E. Dongmo, R. Gadow, A. Killinger, and M. Wenzelburger, Modeling of Combustion as Well as Heat, Mass, and Momentum Transfer During Thermal Spraying by HVOF and HVSFS, J. Therm. Spray Technol., 2009, 18, p 896-908

    Article  Google Scholar 

  32. J. Oberste Berghaus and B.R. Marple, High-Velocity Oxy-Fuel (HVOF) Suspension Spraying of Mullite Coatings, J. Therm. Spray Technol., 2008, 17, p 671-678

    Article  Google Scholar 

  33. ANSYS Inc., ANSYS FLUENT Theory Guide, 2011

  34. H. Tabbara and S. Gu, A Study of Liquid Droplet Disintegration for the Development of Nanostructured Coatings, AIChE J., 2012, 58, p 3533-3544

    Article  Google Scholar 

  35. S. Kamnis and S. Gu, 3-D Modelling of Kerosene-Fuelled HVOF Thermal Spray Gun, Chem. Eng. Sci., 2006, 61, p 5427-5439

    Article  Google Scholar 

  36. S. Gordon and B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, NASA Reference Publication No. 1311 (Lewis Research Center, Cleveland, OH, Oct 5, 1994)

  37. F. Jabbari, M. Jadidi, R. Wuthrich, and A. Dolatabadi, A Numerical Study of Suspension Injection in Plasma-Spraying Process, J. Therm. Spray Technol., 2014, 23, p 3-13

    Article  Google Scholar 

  38. G.E. Lorenzetto and A.H. Lefebvre, Measurements of Drop Size on a Plain-Jet Airblast Atomizer, AIAA J., 1977, 15, p 1006-1010

    Article  Google Scholar 

  39. E. Quijada-Maldonado, G.W. Meindersma, and A.B. de Haan, Viscosity and Density Data for the Ternary System Water(1)-Ethanol(2)-Ethylene Glycol(3) Between 298.15 K and 328.15 K, J. Chem. Thermodyn., 2013, 57, p 500-505

    Article  Google Scholar 

  40. C.C. Goodson, “Simulation of Microwave Heating of Mullite Rods,” M.Sc. Thesis, Virginia Polytechnic Institute and State University, VA, 1997

  41. H. Schneider, K. Okada, and J.A. Pask, Mullite and Mullite Ceramics, Wiley, Chichester, 1994

    Google Scholar 

  42. B. Hildmann and H. Schneider, Heat Capacity of Mullite: New Data and Evidence for a High-Temperature Phase Transformation, J. Am. Ceram. Soc., 2004, 8(2), p 227-234

    Article  Google Scholar 

  43. S. Azizian and M. Hemmati, Surface Tension of Binary Mixtures of Ethanol + Ethylene Glycol from 20 to 50 °C, J. Chem. Eng. Data, 2003, 48, p 662-663

    Article  Google Scholar 

  44. S. Tanvir and L. Qiao, Surface tension of Nanofluid-Type Fuels Containing Suspended Nanomaterials, Nanoscale Res. Lett., 2012, 7, p 226

    Article  Google Scholar 

  45. B.W. Brian and J.C. Chen, Surface Tension of Solid-Liquid Slurries, AIChE J., 1987, 33(2), p 316-318

    Article  Google Scholar 

  46. G.I. Taylor, The Shape and Acceleration of a Drop in High-Speed Air Stream, The Scientific Papers of Sir Geoffrey Ingram Taylor, Vol 3, G.K. Batchelor, Ed., Cambridge University Press, Cambridge, 1963, p 457-464

    Google Scholar 

  47. M. Li and P.D. Christofides, Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review, J. Therm. Spray Technol., 2009, 18, p 753-768

    Article  Google Scholar 

  48. M. Li and P.D. Christofides, Computational Study of Particle In-Flight Behavior in the HVOF Thermal Spray Process, Chem. Eng. Sci., 2006, 61, p 6540-6552

    Article  Google Scholar 

  49. M. Li and P.D. Christofides, Multi-Scale Modeling and Analysis of an Industrial HVOF Thermal Spray Process, Chem. Eng. Sci., 2005, 60, p 3649-3669

    Article  Google Scholar 

  50. A. Dolatabadi, J. Mostaghimi, and V. Pershin, High efficiency nozzle for thermal spray of high quality, low oxide content coatings. U.S. Patent Number 6,845,929, 2005

  51. S. Basu and B.M. Cetegen, Modeling of Liquid Ceramic Precursor Droplets in a High Velocity Oxy-Fuel Flame Jet, Acta Mater., 2008, 56, p 2750-2759

    Article  Google Scholar 

  52. M. Jadidi, M. Mousavi, S. Moghtadernejad, and A. Dolatabadi, A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate, J. Therm. Spray Technol., 2015, 24, p 11-23

    Google Scholar 

  53. G. Mauer, R. Vaßen, and D. Stover, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16, p 414-424

    Article  Google Scholar 

  54. F. Tarasi, “Suspension Plasma Sprayed Alumina-Yttria Stabilized Zirconia Nano-composite Thermal Barrier Coatings: Formation and Roles of the Amorphous Phase,” Ph.D. Thesis, Concordia University, Montreal, 2010

  55. J. Colmenares-Angulo, K. Shinoda, T. Wentz, W. Zhang, Y. Tan, and S. Sampath, On the Response of Different Particle State Sensors to Deliberate Process Variations, J. Therm. Spray Technol., 2011, 20, p 1035-1048

    Article  Google Scholar 

  56. S. Sampath, V. Srinivasan, A. Valarezo, A. Vaidya, and T. Streibl, Sensing, Control, and In Situ Measurement of Coating Properties: An Integrated Approach Toward Establishing Process-Property Correlations, J. Therm. Spray Technol., 2009, 18, p 243-255

    Article  Google Scholar 

  57. F. Bissons, M. Lamontagne, C. Moreau, L. Pouliot, J. Blain, and F. Nadeau, Ensemble In-Flight Particle Diagnostics Under Thermal Spray Conditions, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., ASM International, Materials Park, 2001, p 705-714

    Google Scholar 

  58. S. Moghtadernejad, M. Jadidi, N. Esmail, and A. Dolatabadi, SPH Simulation of Rivulet Dynamics on Surfaces with Various Wettabilities, SAE Int. J. Aerosp., 2015, 8(1), p 160-173

    Article  Google Scholar 

  59. M. Gorokhovski and M. Herrmann, Modeling Primary Atomization, Annu. Rev. Fluid Mech., 2008, 40, p 343-366

    Article  Google Scholar 

  60. C.W. Hirt and B.D. Nichols, Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 1981, 39, p 201-225

    Article  Google Scholar 

  61. M. Jadidi, M. Tembely, S. Moghtadernejad, and A. Dolatabadi, A coupled level set and volume of fluid method with application to compressible two-phase flow, Proceedings of 22nd Annual Conference of the CFD Society of Canada, Toronto, June 1-4, 2014

Download references

Acknowledgments

The authors would like to acknowledge the support provided by Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dolatabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadidi, M., Moghtadernejad, S. & Dolatabadi, A. Numerical Modeling of Suspension HVOF Spray. J Therm Spray Tech 25, 451–464 (2016). https://doi.org/10.1007/s11666-015-0364-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0364-6

Keywords

Navigation