Skip to main content
Log in

Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are used in many engineering applications such as vehicle and industrial waste-heat recovery systems to provide electrical power, improve operating efficiency and reduce costs. State-of-art TEG manufacturing is based on prefabricated materials and a labor-intensive process involving soldering, epoxy bonding, and mechanical clamping for assembly. This reduces their durability and raises costs. Additive manufacturing technologies, such as thermal spray, present opportunities to overcome these challenges. In this work, TEGs have been fabricated for the first time using thermal spray technology and laser micromachining. The TEGs are fabricated directly onto engineering component surfaces. First, current fabrication techniques of TEGs are presented. Next, the steps required to fabricate a thermal spray-based TEG module, including the formation of the metallic interconnect layers and the thermoelectric legs are presented. A technique for bridging the air gap between two adjacent thermoelectric elements for the top layer using a sacrificial filler material is also demonstrated. A flat 50.8 mm × 50.8 mm TEG module is fabricated using this method and its performance is experimentally characterized and found to be in agreement with expected values of open-circuit voltage based on the materials used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Yang and T. Caillat, Thermoelectric Materials for Space and Automotive Power Generation, MRS Bull., 2006, 31(03), p 224-229

    Article  Google Scholar 

  2. J. Yang and F. Stabler, Automotive Applications of Thermoelectric Materials, J. Electron. Mater., 2009, 38(7), p 1245-1251

    Article  Google Scholar 

  3. M.A. Karri, E.F. Thacher, and B.T. Helenbrook, Exhaust Energy Conversion by Thermoelectric Generator: Two Case Studies, Energy Convers. Manag., 2011, 52(3), p 1596-1611

    Article  Google Scholar 

  4. W.S. Wang, W. Magnin, N. Wang, M. Hayes, B. O’Flynn, and C. O’Mathuna, Bulk Material Based Thermoelectric Energy Harvesting for Wireless Sensor Applications, J. Phys: Conf. Ser., 2011, 307(1), p 012030

    Google Scholar 

  5. J. Dilhac, R. Monthéard, M. Bafleur, V. Boitier, P. Durand-Estèbe, and P. Tounsi, Implementation of Thermoelectric Generators in Airliners for Powering Battery-Free Wireless Sensor Networks, J. Electron. Mater., 2014, 43(6), p 2444-2451

    Article  Google Scholar 

  6. M. Tewolde, C.C. Lin, H. Tao, H. Chen, G. Fu, D. Liu, T. Zhang, D. Benjamin, L. Zuo, D. Hwang, and J. Longtin, Sensors for Small Modular Reactors Powered by Thermoelectric Generators, ASME 2014 Small Modular Reactors Symposium, American Society of Mechanical Engineers, 2014

  7. A. Schmitz, C. Stiewe, and E. Muller, Preparation of Ring-Shaped Thermoelectric Legs from PbTe Powders for Tubular Thermoelectric Modules, J. Electron. Mater., 2013, 42(7), p 1702-1706

    Article  Google Scholar 

  8. S. Kumar, S.D. Heister, X.F. Xu, J.R. Salvador, and G.P. Meisner, Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation and Topological Studies, J. Electron. Mater., 2013, 42(6), p 944-955

    Article  Google Scholar 

  9. D. Crane, J. LaGrandeur, V. Jovovic, M. Ranalli, M. Adldinger, E. Poliquin, J. Dean, D. Kossakovski, B. Mazar, and C. Maranville, TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development, J. Electron. Mater., 2013, 42(7), p 1582-1591

    Article  Google Scholar 

  10. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, 2008

    Book  Google Scholar 

  11. H. Herman, S. Sampath, and R. McCune, Thermal Spray: Current Status and Future Trends, MRS Bull., 2000, 25(07), p 17-25

    Article  Google Scholar 

  12. S. Sampath, Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future, Journal of Thermal Spray Technology, 2010, 19(5), p 921-949

    Article  Google Scholar 

  13. M. Gardon, O. Monereo, S. Dosta, G. Vescio, A. Cirera, and J.M. Guilemany, New Procedures for Building-Up the Active Layer of Gas Sensors on Flexible Polymers, Surface & Coatings Technology, 2013, 235, p 848-852

  14. H. Ronkainen, U. Kanerva, T. Varis, K. Ruusuvuori, E. Turunen, J. Perantie, J. Putaala, J. Juuti, and H. Jantunen, Materials for Electronics by Thermal Spraying, Physical and Numerical Simulation of Materials Processing Vii, L.P. Karjalainen, D.A. Porter and S.A. Jarvenpaa, Eds., 2013, p 451-456

  15. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Materials Park, 2004

    Google Scholar 

  16. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press, Boca Raton, 2005

    Book  Google Scholar 

  17. B. Sherman, R.R. Heikes, and J.R.W. Ure, Calculation of Efficiency of Thermoelectric Devices, J. Appl. Phys., 1960, 31(1), p 1-16

    Article  Google Scholar 

  18. T. Hendricks, N. Karri, T. Hogan, and C. Cauchy, New Perspectives in Thermoelectric Energy Recovery System Design Optimization, J. Electron. Mater., 2013, 42(7), p 1725-1736 (in English)

    Article  Google Scholar 

  19. K. Kato, Y. Hatasako, M. Kashiwagi, H. Hagino, C. Adachi, and K. Miyazaki, Fabrication of a Flexible Bismuth Telluride Power Generation Module Using Microporous Polyimide Films as Substrates, J. Electron. Mater., 2014, 43(6), p 1733-1739

    Article  Google Scholar 

  20. L. Bell, Flexible thermoelectric circuit, Google Patents, 2003

  21. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit, Nature, 2001, 413(6856), p 597-602

    Article  Google Scholar 

  22. S. LeBlanc, Thermoelectric Generators: Linking Material Properties and Systems Engineering for Waste Heat Recovery Applications, Sustainable Materials and Technologies, 2014, 1-2, p 26-35

    Article  Google Scholar 

  23. M. Yahatz and J. Harper, Fabrication of Thermoelectric Modules and Solder for Such Fabrication, Google Patents, 1998

  24. R. Joachim and W. Heinz, Thermoelectric Couple with Soft Solder Electrically Connecting Semi-conductors and Method of Making Same, Google Patents, 1969

  25. A.G. Gillen and B. Cantor, Photocalorimetric Cooling Rate Measurements on a Ni-5 wt% A1 Alloy Rapidly Solidified by Melt Spinning, Acta Metall., 1985, 33(10), p 1813-1825

    Article  Google Scholar 

  26. Q. Li, Z. Lin, and J. Zhou, Thermoelectric Materials with Potential High Power Factors for Electricity Generation, J. Electron. Mater., 2009, 38(7), p 1268-1272

    Article  Google Scholar 

  27. G. Fu, L. Zuo, J. Longtin, C. Nie, and R. Gambino, Thermoelectric Properties of Magnesium Silicide Fabricated Using Vacuum Plasma Thermal Spray, J. Appl. Phys., 2013, 114(14), p 6

    Article  Google Scholar 

  28. G. Fu, L. Zuo, J. Longtin, C. Nie, Y. Chen, M. Tewolde, and S. Sampath, Thermoelectric Properties of Magnesium Silicide Deposited by Use of an Atmospheric Plasma Thermal Spray, J. Electron. Mater., 2014, 43(7), p 2723-2730

    Article  Google Scholar 

  29. M. Fukumoto, M. Itoh, Y. Tanaka, H. Yakabe, and K. Kikuchi, Preparation of Beta-Fesi2 Thermoelectric Coatings by Plasma Spraying of Mechanically-Alloyed Powders, J. Jpn. Inst. Metals, 1998, 62(5), p 449-456 (in Japanese)

    Google Scholar 

  30. Y. Tanaka, Y. Tokimoto, and M. Fukumoto, Fabrication and Improvement of Plasma Sprayed Si-Ge Thermoelectric Coating, J. Jpn. Inst. Metals, 1999, 63(8), p 1029-1035 (in Japanese)

    Google Scholar 

  31. Narendra B. Dahotre and S.P. Harimkar, Laser Fabrication and Machining of Materials, Springer, Berlin, 2008

    Google Scholar 

  32. D. Bäuerle, Laser Processing and Chemistry, Springer, Berlin, 2011

    Book  Google Scholar 

  33. R.S. Figliola and D.E. Beasley, Theory and Design for Mechanical Measurements, 5th ed., Wiley, Hoboken, 2015

    Google Scholar 

  34. D.M. Rowe and G. Min, Design Theory of Thermoelectric Modules for Electrical Power Generation, IEE ProceedingsScience, Measurement and Technology, 1996, p. 351-356

  35. T. Clyne and S. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401-418

    Article  Google Scholar 

  36. M. Tewolde, D. Liu, D. Hwang, and J. Longtin, Laser Processing of Thermal Sprayed Coatings for Thermoelectric Generators, ASME 2013 Heat Transfer Summer Conference, ASME, 2013

  37. J.R. Davis, ASM Specialty Handbook—Copper and Copper Alloys, ASM International, Materials Park, 2001

    Google Scholar 

  38. Y. Itoh, S. Suyama, and H. Fukanuma, Thermal and Electrical Properties of Copper Coatings Produced by Cold Spraying, J Soc Mater Sci Jpn, 2010, 59(2), p 143-148

    Article  Google Scholar 

  39. T. Tong, J. Li, Q. Chen, J.P. Longtin, S. Tankiewicz, and S. Sampath, Ultrafast Laser Micromachining of Thermal Sprayed Coatings for Microheaters: Design, Fabrication and Characterization, Sensors and Actuators A, 2004, 114(1), p 102-111

    Article  Google Scholar 

  40. M. Scagliotti, F. Parmigiani, G. Chiodelli, A. Magistris, G. Samoggia, and G. Lanzi, Plasma-Sprayed Zirconia Electrolytes, Solid State Ionics, 1988, 28-30(Part 2), p 1766-1769

    Article  Google Scholar 

  41. H. Guo, S. Kuroda, and H. Murakami, Microstructures and Properties of Plasma-Sprayed Segmented Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89(4), p 1432-1439

    Article  Google Scholar 

  42. R. Brandt, L. Pawlowski, G. Neuer, and P. Fauchais, Specific heat and thermal conductivity of plasma stabilized yttria-stabilized zirconia and NiAl, NiCrAl, NiCrAlY, NiCoCrAlY coatings, High Temp. High Press, 1986, 18, p 65-67

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support for this work from the New York State Energy Research and Development Authority (NYSERDA) under Agreement # 25222 and the National Science Foundation under Grant CBET #1048744.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon P. Longtin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tewolde, M., Fu, G., Hwang, D.J. et al. Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining. J Therm Spray Tech 25, 431–440 (2016). https://doi.org/10.1007/s11666-015-0351-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0351-y

Keywords

Navigation