Skip to main content
Log in

Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel

  • Technical Note
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel’s resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Hembram, G. Duttab, U. Waghmareb, and M. Rao, Electrical and Structural Properties of Zirconia Thin Films Prepared by Reactive Magnetron Sputtering, Phys. B, 2007, 399, p 21-26

    Article  CAS  Google Scholar 

  2. F. Legorreta, V. Gonzaga, E. De Grave, A. Peigney, A. Barnabe, and C. Laurent, Iron-Stabilized Nanocrystalline ZrO2 Solid Solutions: Synthesis by Combustion and Thermal Stability, Mater. Res. Bull., 2009, 44, p 1301-1311

    Article  Google Scholar 

  3. R. Polanco, “Processes of Union and Study of Interfaces in Si3N4 and ZrO2,” Doctoral Thesis, Department of Inorganic Chemistry, College of Science. Universidad Autómona de Madrid, 2007, p 6-11

  4. I. Kosackia, T. Rouleaub, P. Bechera, J. Bentleya, and D. Lowndesb, Nanoscale Effects on the Ionic Conductivity in Highly Textured YSZ Thin Films, Solid State Ionics, 2005, 176, p 1319-1326

    Article  Google Scholar 

  5. R. Ugas-Carrión, F. Sittner, M. Yekehtaz, S. Flege, J. Brötz, and W. Ensinger, Influence of Stabilizing Agents on Structure and Protection Performance of Zirconium Oxide Films, Surf. Coat. Technol., 2010, 204, p 2064-2067

    Article  Google Scholar 

  6. G. Freiman, P. Barboux, J. Perrière, and K. Giannakopoulos, Layer by Layer Deposition of Zirconium Oxide onto Silicon, Thin Solid Films, 2009, 517, p 2670-2674

    Article  CAS  Google Scholar 

  7. T. Yeh, Y. Chien, B. Wang, and B. Horng, Electrochemical Characteristics of Zirconium Oxide Treated Type 304 Stainless Steels of Different Surface Oxide Structures in High Temperature Water, Corros. Sci., 2008, 50, p 2327-2337

    Article  CAS  Google Scholar 

  8. F. Samiee, K. Raeissi, and M.A. Golozar, The Effect of Heat Treatment Temperature on the Structure and Barrier Performance of a Zirconia Coating Electrodeposited by Pulse Current, Corros. Sci., 2011, 53, p 1969-1975

    Article  CAS  Google Scholar 

  9. K. Koski, J. Ho, and P. Juliet, Properties of Zirconium Oxide Thin Films Deposited by Pulsed Reactive Magnetron Sputtering, Surf. Coat. Technol., 1999, 120-121, p 303-312

    Article  CAS  Google Scholar 

  10. I. Safi, Recent Aspects Concerning DC Reactive Magnetron Sputtering of Thin Films: A Review, Surf. Coat. Technol., 2000, 127(2-3), p 203-218

    Article  CAS  Google Scholar 

  11. F. Samanipour, M. Bayati, F. Golestani, H. Zargar, T. Troczynski, and A. Mirhabibi, An Innovative Technique to Simply Fabricate ZrO2-HA-TiO2 Nanostructured Layers, Colloids Surf. B, 2011, 86, p 14-20

    Article  CAS  Google Scholar 

  12. J. Mooney and S. Radding, Spray Pyrolysis Processing, Annu. Rev. Mater. Sci., 1982, 12, p 81-101

    Article  CAS  Google Scholar 

  13. B. Lokhande, P. Patil, and M. Uplane, Studies on Cadmium Oxide Sprayed Thin Films Deposited Through Non-Aqueous Medium, Mater. Chem. Phys., 2004, 84, p 238-242

    Article  CAS  Google Scholar 

  14. A. Arya and H. Hintermann, Growth of Y-Ba-Cu-O Superconducting Thin Films by Ultrasonic Spray Pyrolysis, Thin Solid Films, 1990, 193-194, p 841-846

    Article  CAS  Google Scholar 

  15. I. Cubillos, J.J. Olaya, M. Bethencourt, G. Cifredo, and J.F. Marco, Producción y caracterización de películas de óxido de circonio por Espray pirólisis, Rev. Latin Am. Met. Mater., 2013, 33(1), p 1-8

    Google Scholar 

  16. M. García, J. Peña, A. Ortiz, G. Santana, F. Fandiño, M. Bizarro, J. Cruz, and M. Alonso, Nanostructured YSZ Thin films for Solid Oxide Fuel Cells Deposited by Ultrasonic Spray Pyrolysis, Solid State Ionics, 2008, 179, p 243-249

    Article  Google Scholar 

  17. P. Mehrotra and E. Billman, Research Patent, ES 2 018 417, 1991

  18. I. Espitia, H. Orozco, P. Bartolo, and M. Contreras, Nanostructure Characterization in Single and Multi-Layer Yttria Stabilized Zirconia Films Using XPS, SEM, EDS and AFM, Surf. Coat. Technol., 2008, 203, p 1301-1311

    Google Scholar 

  19. J. Choi, Y. Mao, and J. Chang, Development of Hafnium Based High-k Materials—A Review, Mater. Sci. Eng. R, 2011, 72, p 97-136

    Article  Google Scholar 

  20. H. Yang, J. Ouyang, X. Zhang, N. Wang, and C. Du, Synthesis and Optical Properties of Yttria-Doped ZrO2 Nanopowders, J. Alloy Compd., 2008, 458, p 474-478

    Article  CAS  Google Scholar 

  21. E. Andrade, E. Ramirez, A. Alonso, and M. Rocha, IBA of ZrO2:Yb/Si Thin Films Produced by the Spray Pyrolysis Method, Nucl. Instrum. Methods Phys. Res. B, 2008, 266, p 2433-2436

    Article  CAS  Google Scholar 

  22. R. Leiva-García, J. García-Antón, and M.J. Muñoz-Portero, Contribution to the Elucidation of Corrosion Initiation Through Confocal Laser Scanning Microscopy (CLSM), Corros. Sci., 2010, 52, p 2133-2142

    Article  Google Scholar 

  23. www.uksaf.org/data/sfactors.html. Database of Empirically Derived Atomic Sensitivity Factors for XPS.

  24. S. De Armas, F. Marro, E. Jiménez, and M. Anglada, Estudio por nanoindentación de 3Y-TZP envejecida por degradación hidrotérmica, XII National Meeting of Solid Mechanical Properties, Aránzazu-Guipúzcoa, 2010

  25. G. Abadias, L.E. Koutsokeras, A. Siozios, and P. Patsalas, Stress, Phase Stability and Oxidation Resistance of Ternary Ti-Me-N (Me = Zr, Ta) Hard Coatings, Thin Solid Films, 2013, 538, p 56-70

    Article  CAS  Google Scholar 

  26. N. Zhang, X.J. Zhao, H.Q. Ru, X.Y. Wang, and D.L. Chen, Thermal Shock Behavior of Nano-Sized ZrN Particulate Reinforced AlON Composites, Ceram. Int., 2013, 39, p 367-375

    Article  CAS  Google Scholar 

  27. C. Zhou, Q. Zhang, and Y. Li, Thermal Shock Behavior of Nanostructured and Microstructured Thermal Barrier Coatings on a Fe-Based Alloy, Surf. Coat. Technol., 2013, 217, p 70-75

    Article  CAS  Google Scholar 

  28. H. Oettel, R. Wiedemann, and S. Preibler, Residual Stresses in Nitride Hard Coatings Prepared by Magnetron Sputtering and Arc Evaporation, Surf. Coat. Technol., 1995, 74-75, p 273-278

    Article  CAS  Google Scholar 

  29. M.R. Begley and H. Wadley, Delamination Resistance of Thermal Barrier Coatings Containing Embedded Ductile Layers, Acta Mater., 2012, 60, p 2497-2508

    Article  CAS  Google Scholar 

  30. M. Terada, D.M. Escriba, I. Costa, E. Materna-Morris, and A.F. Padilha, Investigation on the Intergranular Corrosion Resistance of the AISI, 316L(N) Stainless Steel After Long Time Creep Testing at 600 °C, Mater. Charact., 2008, 59, p 663-668

    Article  CAS  Google Scholar 

  31. T.S. Shih, Y.S. Huang, and C.F. Chen, Constituted Oxides/Nitrides on Nitriding 304, 430 and 17-4 PH Stainless Steel in Salt Baths Over the Temperature Range 723 to 923 K, Appl. Surf. Sci., 2011, 258, p 81-88

    Article  CAS  Google Scholar 

  32. M.R. Saghi, Sh. Khameneh, and S. Norouzi, A Comparative Research on Corrosion Behavior of a Standard, Crack-Free and Duplex Hard Chromium Coatings, Surf. Coat. Technol., 2010, 205, p 2605-2610

    Article  Google Scholar 

  33. R. López Ibáñez, F. Martín, J.R. Ramos-Barrado, and D. Leinen, Optimization of Spray Pyrolysis Zirconia Coatings on Aluminized Steel, Surf. Coat. Technol., 2006, 200, p 6368-6372

    Article  Google Scholar 

  34. E. Setare, K. Raeissi, M.A. Golozar, and M.H. Fathi, The Structure and Corrosion Barrier Performance of Nanocrystalline Zirconia Electrodeposited Coating, Corros. Sci., 2009, 51, p 1802-1808

    Article  CAS  Google Scholar 

  35. R. Di Maggio, S. Rossi, L. Fedrizzi, and P. Scardi, ZrO2-CeO2 Films as Protective Coatings Against Dry and Wet Corrosion of Metallic Alloys, Surf. Coat. Technol., 1997, 89, p 292-298

    Article  Google Scholar 

  36. S. Liscano, L. Gil, O. León, M. Cruz, and M. Staia, Corrosion Performance of Duplex Treatments Based on Plasma Nitriding and PAPVD TiAlN Coating, Surf. Coat. Technol., 2006, 201, p 4419-4423

    Article  CAS  Google Scholar 

  37. J. Valle, A. Mestra, and M. Anglada, Thermal Stability in Air of Surface Nitrided 3Y-TZP, J. Eur. Ceram. Soc., 2011, 31, p 1015-1025

    Article  CAS  Google Scholar 

  38. F.M. Bayoumi and W.A. Ghanem, Effect of Nitrogen on the Corrosion Behavior of Austenitic Stainless Steel in Chloride Solutions, Mater. Lett., 2005, 59, p 3311-3314

    Article  CAS  Google Scholar 

  39. M. Katsura, Thermodynamics of Nitride and Hydride Formation by the Reaction of Metals with Flowing NH3, J. Alloy Compd., 1992, 182, p 91-102

    Article  CAS  Google Scholar 

  40. H. Dong, Y. Sun, and T. Bell, Enhanced Corrosion Resistance of Duplex Coatings, Surf. Coat. Technol., 1997, 90, p 91-101

    Article  CAS  Google Scholar 

  41. L.C. Gontijo, R. Machado, S.E. Kuri, L.C. Casteletti, and P. Nascente, Corrosion Resistance of the Layers Formed on the Surface of Plasma-Nitrided AISI, 304L Steel, Thin Solid Films, 2006, 515, p 1093-1096

    Article  CAS  Google Scholar 

  42. M. Signore, A. Rizzo, L. Mirenghi, M. Tagliente, and A. Cappello, Characterization of Zirconium Oxynitride Films Obtained by Radio Frequency Magnetron Reactive Sputtering, Thin Solid Films, 2007, 515, p 6798-6804

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Foundation for the Promotion of Research and Technology—Bank of the Republic of Colombia—for funding this research, the LABYP Corrosion and Protection Laboratory of the University of Cádiz for allowing the realization of corrosion experiments, and the Rocasolano Institute of Physical Chemistry for allowing the realization of the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Cubillos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cubillos, G.I., Olaya, J.J., Bethencourt, M. et al. Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel. J Therm Spray Tech 22, 1242–1252 (2013). https://doi.org/10.1007/s11666-013-9956-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9956-1

Keywords

Navigation