Skip to main content
Log in

Study of the Splat Microstructure and the Effects of Substrate Heating on the Splat Formation for Ni-Cr Particles Plasma Sprayed onto Stainless Steel Substrates

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The plasma spraying process is still poorly understood in term of the processes by which the coating is built up, especially coating interactions with the substrate. This present study enhances this understanding by studying, through a range of electron microscopy techniques, single NiCr splats plasma sprayed onto stainless steel substrates, which were first exposed to different heat treatments. The microstructure of the splats, particularly the splat-substrate interface, was characterized, and the formation of the observed features is discussed. Evidence of localized substrate melting and inter-mixing with the splat material was found, showing metallurgical bonding. The structures observed were also correlated to the treatment of the substrate, demonstrating how such treatments can influence the properties of the fully deposited coating by modifying the splat formation process. Most notably, heating the substrate during spraying was found to significantly modify splat formation by reducing splashing and increasing the extent of substrate melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.F. Bunshah, Handbook of Hard Coatings. Deposition Technologies, Properties and Applications, William Andrew Publishing/Noyes, Norwich, NY, 2001

    Google Scholar 

  2. M. Dorfman, Thermal Spray Basics, Adv. Mater. Process., 2002, 160, p 47-50

    CAS  Google Scholar 

  3. M. Fukumoto, M. Shiiba, H. Kaji, and T. Yasui, Three-Dimensional Transition Map of Flattening Behavior in the Thermal Spray Process, Pure Appl. Chem., 2005, 77(2), p 429-442

    Article  CAS  Google Scholar 

  4. F. Otsubo, H. Era, and K. Kishitake, Interface Reaction Between Nickel-Base Self-Fluxing Alloy Coating and Steel Substrate, J. Therm. Spray Technol., 2000, 9(2), p 259-263

    Article  CAS  ADS  Google Scholar 

  5. H. Du, J.H. Shin, and S.W. Lee, Study on Porosity of Plasma-Sprayed Coatings by Digital Image Analysis Method, J. Therm. Spray Technol., 2005, 14(4), p 453-461

    Article  CAS  ADS  Google Scholar 

  6. J.M. Guilemany, J. Nutting, and M.J. Dougan, A Transmission Electron Microscopy Study of the Microstructures Present in Alumina Coatings Produced by Plasma Spraying, J. Therm. Spray Technol., 1997, 6(4), p 425-429

    Article  CAS  ADS  Google Scholar 

  7. J. Cedelle, M. Vardelle, and P. Fauchais, Influence of Stainless Steel Substrate Preheating on Surface Topography and on Millimeter- and Micrometer-Sized Splat Formation, Surf. Coat. Technol., 2006, 201, p 1373-1382

    Article  CAS  Google Scholar 

  8. J. Cedelle, M. Vardelle, B. Pateyron, and P. Fauchais, Investigation of Plasma Sprayed Coatings Formation by Visualization of Droplet Impact and Splashing on a Smooth Substrate, Trans. Plasm. Sci., 2005, 33(2), p 414-415

    Article  CAS  ADS  Google Scholar 

  9. R. Dhiman, A.G. McDonald, and S. Chandra, Predicting Splat Morphology in a Thermal Spray Process, Surf. Coat. Technol., 2007, 201, p 7789-7801

    Article  CAS  Google Scholar 

  10. R. Ghafouri-Azar, S. Shakeri, S. Chandra, and J. Mostaghimi, Interactions Between Molten Metal Droplets Impinging on a Solid Surface, Int. J. Heat Mass Transf., 2003, 46, p 1395-1407

    Article  CAS  Google Scholar 

  11. S. Goutier, M. Vardelle, J.C. Labbe, and P. Fauchais, Alumina Splat Investigation: Visualization of Impact and Splat/Substrate Interface for Millimetre Sized Drops, J. Therm. Spray Technol., 2010, 19(1-2), p 49-55

    Article  CAS  ADS  Google Scholar 

  12. L. Bianchi, A. Denoirjean, F. Blein, and P. Fauchais, Microstructural Investigation of Plasma-Sprayed Ceramic Splats, Thin Solid Films, 1997, 299, p 125-135

    Article  CAS  ADS  Google Scholar 

  13. S. Sampath and X. Jiang, Splat Formation and Microstructure Development During Plasma Spraying: Deposition Temperature Effect, Mater. Sci. Eng. A, 2001, 304-306, p 144-150

    Article  Google Scholar 

  14. H. Zhang, X.Y. Wang, L.L. Zheng, and X.Y. Jiang, Studies of Splat Morphology and Rapid Solidification During Thermal Spraying, Int. J. Heat Mass Transf., 2001, 44, p 4579-4592

    Article  MATH  CAS  Google Scholar 

  15. C.-L. Li and J.-L. Li, Evaporated-Gas-induced Splashing Model for Splat Formation During Plasma Spraying, Surf. Coat. Technol., 2004, 184, p 13-23

    Article  CAS  Google Scholar 

  16. H. Li, S. Costil, H.-L. Liao, C.-J. Li, M. Planche, and C. Coddet, Effects of Surface Conditions on the Flattening Behavior of Plasma Sprayed Cu Splats, Surf. Coat. Technol., 2006, 200, p 5435-5446

    Article  CAS  Google Scholar 

  17. M. Fukumoto, E. Nishioka, and T. Matsubara, Flattening Solidification Behavior of a Metal Droplet on a Flat Substrate Surface Held at Various Temperatures, Surf. Coat. Technol., 1999, 120-121, p 131-137

    Article  CAS  Google Scholar 

  18. A. McDonald, C. Moreau, and S. Chandra, Thermal Contact Resistance Between Plasma-Sprayed Particles and Flat Surfaces, Int. J. Heat Mass Transf., 2007, 50, p 1737-1749

    Article  MATH  CAS  Google Scholar 

  19. M. Fukumoto, H. Nagai, and T. Yasui, Influence of Surface Character Change of Substrate due to Heating on Flattening Behavior of Thermal Sprayed Particles, J. Therm. Spray Technol., 2006, 15(4), p 759-764

    Article  CAS  ADS  Google Scholar 

  20. L. Bianchi, A.C. Leger, M. Vardelle, A. Vardelle, and P. Fauchais, Splat Formation and Cooling of Plasma-Sprayed Zirconia, Thin Solid Films, 1997, 305, p 35-47

    Article  CAS  ADS  Google Scholar 

  21. T. Chraska and A.H. King, Effect of Different Substrate Conditions upon Interface with Plasma Sprayed Zirconia—A TEM Study, Surf. Coat. Technol., 2002, 157, p 238-246

    Article  CAS  Google Scholar 

  22. Z.G. Feng, M. Domaszewski, G. Montavon, and C. Coddet, Finite Element Analysis of Effect of Substrate Surface Roughness on Liquid Droplet Impact and Flattening Process, J. Therm. Spray Technol., 2002, 11(1), p 62-68

    Article  CAS  ADS  Google Scholar 

  23. A.A. Syed, A. Denoirjean, B. Hannoyer, P. Fauchais, P. Denoirjean, A.A. Khan, and J.C. Labbe, Influence of Substrate Surface Conditions on the Plasma Sprayed Ceramic and Metallic Particles Flattening, Surf. Coat. Technol., 2005, 200, p 2317-2331

    Article  CAS  Google Scholar 

  24. S. Kitahara and A. Hasui, A Study of the Bonding Mechanism of Sprayed Coatings, J. Vac. Sci. Technol., 1974, 11(4), p 747-753

    Article  CAS  ADS  Google Scholar 

  25. L. Li, X.Y. Wang, G. Wei, A. Vaidya, H. Zhang, and S. Sampath, Substrate Melting During Thermal Splat Quenching, Thin Solid Films, 2004, 468, p 113-119

    Article  CAS  ADS  Google Scholar 

  26. H.-D. Steffens, B. Wielage, and J. Drozak, Interface Phenomena and Bonding Mechanism of Thermally-Sprayed Metal and Ceramic Composites, Surf. Coat. Technol., 1991, 45, p 299-308

    Article  CAS  Google Scholar 

  27. C.-J. Li and J.-L. Li, Transient Contact Pressure During Flattening of Thermal Spray Droplet and its Effect on Splat Formation, J. Therm. Spray Technol., 2004, 13(2), p 229-238

    Article  ADS  Google Scholar 

  28. L. Li, A. Vaidya, S. Sampath, H. Xiong, and L. Zheng, Particle Characterization and Splat Formation of Plasma Sprayed Zirconia, J. Therm. Spray Technol., 2006, 15(1), p 97-105

    Article  ADS  Google Scholar 

  29. J. Mostaghimi and S. Chandra, Splat Formation in Plasma-Spray Coating Process, Pure Appl. Chem., 2002, 74(3), p 441-445

    Article  CAS  Google Scholar 

  30. M. Pasandideh-Fard, S. Chandra, and J. Mostaghimi, A Three-Dimensional Model of Droplet Impact and Solidification, Int. J. Heat Mass Transf., 2002, 45, p 2229-2242

    Article  MATH  CAS  Google Scholar 

  31. M.E. Aalamialeagha, S.J. Harris, and M. Emamighomi, Influence of the HVOF Spraying Process on the Microstructure and Corrosion Behaviours of Ni-20%Cr Coatings, J. Mater. Sci., 2003, 38, p 4587-4596

    Article  CAS  Google Scholar 

  32. S. Brossard, P.R. Munroe, A.T.T. Tran, and M.M. Hyland, Study of the Effects of Surface Chemistry on Splat Formation for Plasma Sprayed NiCr onto Stainless Steel Substrates, Surf. Coat. Technol., 2009, 204(9-10), p 1599-1607

    Article  Google Scholar 

  33. A.T.T. Tran, M.M. Hyland, T. Qiu, B. Withy, and B.J. James, Effect of Surface Chemistry on Splat Formation During Plasma Spraying, J. Therm. Spray Technol., 2008, 17(5-6), p 637-645

    Article  CAS  ADS  Google Scholar 

  34. S. Brossard, P.R. Munroe, A.T.T. Tran, and M.M. Hyland, Study of the Microstructure of NiCr Splats Plasma Sprayed on Stainless Steel by TEM, Surf. Coat. Technol., 2009, 204(9-10), p 1608-1615

    Article  Google Scholar 

  35. P.R. Munroe, The Application of Focused Ion Beam Microscopy in the Material Sciences, Mater. Charact., 2009, 60, p 2-13

    Article  CAS  Google Scholar 

  36. A.T.T. Tran and M.M. Hyland, The Role of Substrate Surface Chemistry on Splat Formation During Plasma Spray Deposition by Experiments and Simulations, J. Therm. Spray Technol., 2010, 19(1-2), p 11-23

    Article  CAS  ADS  Google Scholar 

  37. MatWeb, Material Property Data, 2008 11/11/2008; Available from: http://www.matweb.com/

  38. S. B. Newcomb, “A Microstructural Study of the Oxidation of Ni-Cr Steels in Air and in CO-CO2”, PhD Thesis, University of Cambridge, 1982

  39. G.C. Allen, J.M. Dyke, S.J. Harris, and A. Morries, A Surface Study of the Oxidation of Type 304L Stainless Steel at 600 K in Air, Oxid. Met., 1987, 29(5/6), p 1988

    Google Scholar 

  40. N.S. McIntyre, T.C. Chan, and C. Chen, Characterization of Oxide Structures Formed on Nickel-Chromium Alloy During Low Pressure Oxidation at 500-600 °C, Oxid. Met., 1990, 33(5/6), p 457-479

    Article  CAS  Google Scholar 

  41. J. Stringer, B.A. Wilcox, and R.I. Jaffee, The High-Temperature Oxidation of Nickel-20 wt% Chromium Alloys Containing Dispersed Oxide Phases, Oxid. Met., 1972, 5(1), p 11-47

    Article  CAS  Google Scholar 

  42. X.Y. Jiang, Y. Wan, H. Herman, and S. Sampath, Role of Condensate and Adsorbates on Substrate Surface on Fragmentation of Impinging Molten Droplets During Thermal Spray, Thin Solid Films, 2001, 385, p 132-141

    Article  CAS  ADS  Google Scholar 

  43. C. Escure, M. Vardelle, and P. Fauchais, Experimental and Theoretical Study of the Impact of Alumina Droplets on Cold and Hot Substrates, Plasma. Chem. Plasma Process., 2003, 23(2), p 185-221

    Article  CAS  Google Scholar 

  44. M. Xue, S. Chandra, and J. Mostaghimi, Investigation of Splat Curling up in Thermal Spray Coatings, J. Therm. Spray Technol., 2006, 15(4), p 531-536

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Australian Research Council for provision of funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Brossard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brossard, S., Munroe, P.R., Tran, A.T. et al. Study of the Splat Microstructure and the Effects of Substrate Heating on the Splat Formation for Ni-Cr Particles Plasma Sprayed onto Stainless Steel Substrates. J Therm Spray Tech 19, 1100–1114 (2010). https://doi.org/10.1007/s11666-010-9513-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9513-0

Keywords

Navigation