Skip to main content
Log in

Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent Work

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A review is presented of how heat transfer takes place in plasma-sprayed (zirconia-based) thermal barrier coatings (TBCs) during operation of gas turbines. These characteristics of TBCs are naturally of central importance to their function. Current state-of-the-art TBCs have relatively high levels of porosity (~15%) and the pore architecture (i.e., its morphology, connectivity, and scale) has a strong influence on the heat flow. Contributions from convective, conductive and radiative heat transfer are considered, under a range of operating conditions, and the characteristics are illustrated with experimental data and modeling predictions. In fact, convective heat flow within TBCs usually makes a negligible contribution to the overall heat transfer through the coating, although what might be described as convection can be important if there are gross through-thickness defects such as segmentation cracks. Radiative heat transfer, on the other hand, can be significant within TBCs, depending on temperature and radiation scattering lengths, which in turn are sensitive to the grain structure and the pore architecture. Under most conditions of current interest, conductive heat transfer is largely predominant. However, it is not only conduction through solid ceramic that is important. Depending on the pore architecture, conduction through gas in the pores can play a significant role, particularly at the high gas pressures typically acting in gas turbines (although rarely applied in laboratory measurements of conductivity). The durability of the pore structure under service conditions is also of importance, and this review covers some recent work on how the pore architecture, and hence the conductivity, is affected by sintering phenomena. Some information is presented concerning the areas in which research and development work needs to be focussed if improvements in coating performance are to be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.W. Clyne, Thermal and Electrical Conduction in MMCs, in Comprehensive Composite Materials, Vol. 3 : Metal Matrix Composites, T.W. Clyne, Ed., Elsevier: Amsterdam, 2000, p. 447-468.

    Google Scholar 

  2. T.W. Clyne, I.O. Golosnoy, J.C. Tan, and A.E. Markaki, Porous Materials for Thermal Management under Extreme Conditions, Phil. Trans. A: Math. Phys. Eng. Sci., 2006, 364(1838), p. 125-146.

    Article  CAS  Google Scholar 

  3. T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge Solid State Science Series, E. Davis and I. Ward, Eds., Cambridge: Cambridge University Press, 1993.

    Google Scholar 

  4. I. Sevostianov and M. Kachanov, Anisotropic Thermal Conductivities of Plasma-Sprayed Thermal Barrier Coatings in Relation to the Microstructure, J. Therm. Spray Technol., 2000, 9(4), pp. 478-482.

    ADS  CAS  Google Scholar 

  5. B. Shafiro and M. Kachanov, Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes, J. Appl. Phys., 2000, 87(12), pp. 8561-8569.

    Article  ADS  CAS  Google Scholar 

  6. F. Cernuschi, P. Bianchi, M. Leoni, and P. Scardi, Thermal diffusivity/microstructure relationship in Y-PSZ thermal barrier coatings, J. Therm. Spray Technol., 1999, 8(1), pp. 102-109.

    Article  ADS  CAS  Google Scholar 

  7. R. McPherson, A Model for the Thermal Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112, pp. 89-95.

    Article  ADS  CAS  Google Scholar 

  8. C.J. Li and A. Ohmori, Relationships between the microstructure and properties of thermally sprayed deposits, J. Therm. Spray Technol., 2002, 11(3), pp. 365-374.

    Article  ADS  CAS  Google Scholar 

  9. S. Boire-Lavigne, C. Moreau, and R.G. Saint-Jacques, The Relationship between the Microstructure and Thermal- Diffusivity of Plasma-Sprayed Tungsten Coatings, J. Therm. Spray Technol., 1995, 4(3), pp. 261-267.

    Article  ADS  CAS  Google Scholar 

  10. T.J. Lu, C.G. Levi, H.N.G. Wadley, and A.G. Evans, Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor Deposition, J. Am. Ceram. Soc., 2001, 84(12), pp. 2937-2946.

    CAS  Google Scholar 

  11. T.J. Lu and J.W. Hutchinson, Thermal-Conductivity and Expansion of Cross-Ply Composites with Matrix Cracks, J. Mech. Phys. Solid, 1995, 43(8), pp. 1175-1198.

    Article  MATH  ADS  Google Scholar 

  12. D.Y. Tzou, The Effect of Internal Heat-Transfer in Cavities on the Overall Thermal-Conductivity, Int. J. Heat Mass Transf., 1991, 34(7), pp. 1839-1846.

    Article  Google Scholar 

  13. Z. Hashin, The Differential Scheme and its Application to Cracked Materials, J. Mech. Phys. Solids, 1988, 36(6), pp. 719-734.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. T.H. Bauer, A General Analytical Approach toward the Thermal Conductivity of Porous Media, Int. J. Heat Mass Transf., 1993, 36(17), pp. 4181-4191.

    Article  MATH  CAS  Google Scholar 

  15. I.O. Golosnoy, S.A. Tsipas, and T.W. Clyne, An Analytical Model for Simulation of Heat Flow in Plasma Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2005, 14(2), pp. 205-214.

    Article  ADS  CAS  Google Scholar 

  16. D.M. Zhu and R.A. Miller, Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions, J. Therm. Spray Technol., 2000, 9, pp. 175-180.

    Article  ADS  CAS  Google Scholar 

  17. A.F. Renteria and B. Saruhan, Effect of ageing on microstructure changes in EB-PVD manufactured standard PYSZ top coat of thermal barrier coatings, J. Eur. Ceram. Soc., 2006, 26, pp. 2249-2255.

    Article  CAS  Google Scholar 

  18. M.N. Rahaman, J.R. Gross, R.E. Dutton, and H. Wang, Phase Stability, Sintering, and Thermal Conductivity of Plasma-Sprayed ZrO2-Gd2O3 Compositions for Potential Thermal Barrier Coating Applications, Acta Mater., 2006, 54(6), pp. 1615-1621.

    Article  CAS  Google Scholar 

  19. J.A. Thompson and T.W. Clyne, The Effect of Heat Treatment on the Stiffness of Zirconia Top Coats in Plasma-Sprayed TBCs, Acta Mater., 2001, 49(9), pp. 1565-1575.

    Article  CAS  Google Scholar 

  20. M. Ahrens, S. Lampenscherf, R. Vassen, and D. Stover, Sintering and creep processes in plasma-sprayed thermal barrier coatings, J. Therm. Spray Technol., 2004, 13(3), pp. 432-442.

    Article  ADS  CAS  Google Scholar 

  21. S.R. Choi, D.M. Zhu, and R.A. Miller, Effect of sintering on mechanical properties of plasma-sprayed zirconia-based thermal barrier coatings, J. Am. Ceram. Soc., 2005, 88(10), pp. 2859-2867.

    Article  CAS  Google Scholar 

  22. L. Singheiser, R. Steinbrech, W.J. Quadakkers, and R. Herzog, Failure aspects of thermal barrier coatings, Mater. High Temp., 2001, 18(4), pp. 249-259.

    Article  CAS  Google Scholar 

  23. R. Vassen, N. Czech, W. Mallener, W. Stamm, and D. Stoever, Influence of Impurity Content and Porosity of Plasma-Sprayed Yttria-Stabilized Zirconia Layers on the Sintering Behaviour, Surf. Coat. Technol., 2001, 141, pp. 135-140.

    Article  CAS  Google Scholar 

  24. N.M. Yanar, M.J. Stiger, M. Maris-Sida, F.S. Pettit, and G.H. Meier, “The effects of high temperature exposure on the durability of thermal barrier coatings, Key Eng. Mater., 2001, 197, pp. 145-163.

    Article  CAS  Google Scholar 

  25. V. Lughi, V.K. Tolpygo, and D.R. Clarke, Microstructural aspects of the sintering of thermal barrier coatings, Mater. Sci. Eng. A, 2004, 272, pp. 215-221.

    Google Scholar 

  26. S.A. Tsipas, I.O. Golosnoy, R. Damani, and T.W. Clyne, The Effect of a High Thermal Gradient on Sintering and Stiffening in the Top Coat of a Thermal Barrier Coating (TBC) System, J. Therm. Spray Technol., 2004, 13(3), pp. 370-376.

    Article  ADS  CAS  Google Scholar 

  27. S. Kramer, J. Yang, C.G. Levi, and C.A. Johnson, Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits, J. Am. Ceram. Soc., 2006, 89, pp. 3167-3175.

    Article  CAS  Google Scholar 

  28. X. Chen, Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings, Surf. Coat. Technol., 2006, 200, pp. 3418-3427.

    Article  CAS  Google Scholar 

  29. T. Strangman, D. Raybould, A. Jameel, and W. Baker, Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils, Surf. Coat. Technol., 2007, 202, pp. 658-664.

    Article  CAS  Google Scholar 

  30. K.M. Grant, S. Kramer, J.P.A. Lofvander, and C.G. Levi, CMAS degradation of environmental barrier coatings, Surf. Coat. Technol., 2007, 202, pp. 653-657.

    Article  CAS  Google Scholar 

  31. S. Paul, A. Cipitria, I.O. Golosnoy, and T.W. Clyne, Effects of Impurity Content on the Sintering Characteristics of Plasma Sprayed Zirconia, J. Therm. Spray Technol., 2007, 16(5-6), pp. 798-803.

    Article  ADS  CAS  Google Scholar 

  32. [32] R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer, 1st ed. New York: McGraw-Hill, 1972.

    Google Scholar 

  33. R. Berman, Thermal Conduction in Solids, Oxford: Clarendon, 1976.

    Google Scholar 

  34. P.G. Klemens and R.K. Williams, Thermal Conductivity of Metals and Alloys, Int. Met. Rev., 1986, 31, pp. 197-215.

    CAS  Google Scholar 

  35. L.B. Loeb, The Kinetic Theory of Gases, New York: McGraw-Hill, 1934.

    Google Scholar 

  36. T.J. Lu, H.A. Stone, and M.F. Ashby, Heat Transfer in Open-Cell Metal Foams, Acta Mater., 1998, 46(10), pp. 3619-3635.

    Article  CAS  Google Scholar 

  37. T.J. Lu, Heat Transfer Efficiency of Metal Honeycombs, Int. J. Heat Mass Transf., 1999, 42, pp. 2031-2040.

    Article  MATH  CAS  Google Scholar 

  38. C.Y. Zhao, T. Kim, T.J. Lu, and H.P. Hodson, Thermal Transport in High Porosity Cellular Metal Foams, J. Thermophys. Heat Transf., 2004, 18(3), pp. 309-317.

    Article  CAS  Google Scholar 

  39. S. Ahmaniemi, P. Vuoristo, T. Mantyla, F. Cernuschi, and L. Lorenzoni, Modified Thick Thermal Barrier Coatings: Thermophysical Characterization, J. Eur. Ceram. Soc., 2004, 24, pp. 2669-2679.

    Article  CAS  Google Scholar 

  40. H. Guo, H. Murakami, and S. Kuroda, Thermal cycling behavior of plasma sprayed segmented thermal barrier coatings, Mater. Trans., 2006, 4, pp. 306-309.

    Article  Google Scholar 

  41. H. Hatta and M. Taya, Thermal Conductivity of Coated Filler Composites, J. Appl. Phys., 1986, 59, pp. 1851-1860.

    Article  ADS  CAS  Google Scholar 

  42. Y. Benveniste and T. Miloh, On the Effective Thermal Conductivity of Coated Short-Fiber Composites, J. Appl. Phys., 1991, 69(3), pp. 1337-1344.

    Article  ADS  CAS  Google Scholar 

  43. I. Sevostianov, M. Kachanov, J. Ruud, P. Lorraine, and M. Dubois, Quantitative characterization of microstructures of plasma-sprayed coatings and their conductive and elastic properties, Mater. Sci. Eng. A, 2004, 386, pp. 164-174.

    Google Scholar 

  44. I. Sevostianov, L. Gorbatikh, and M. Kachanov, Recovery of information on the microstructure of porous/microcracked materials from the effective elastic/conductive properties, Mater. Sci. Eng. A, 2001, 318(1-2), pp. 1-14.

    Article  Google Scholar 

  45. D. Zhu, N.P. Bansal, K.N. Lee, and R.A. Miller, Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials, NASA TM-2001-211122, NASA Lewis Research Center, Cleveland, OH, 2001

  46. S. Raghavan, H. Wang, R.B. Dinwiddie, W.D. Porter, and M.J. Mayo, The Effect of Grain Size, Porosity and Yttria Content on the Thermal Conductivity of Nanocrystalline Zirconia, Scr. Mater., 1998, 39(8), pp. 1119-1125.

    Article  CAS  Google Scholar 

  47. R. Mevrel, J.-C. Laizet, A. Azzopardi, B. Leclercq, M. Poulain, O. Lavigne, and D. Demange, Thermal Diffusivity and Conductivity of Zr1−xYxO2−x/2 (x = 0, 0.084 and 0.179) Single Crystals, J. Eur. Ceram. Soc., 2004, 24, pp. 3081-3089.

    Article  CAS  Google Scholar 

  48. R. McPherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramics Coatings, Surf. Coat. Technol., 1989, 39/40, pp. 173-181.

    Article  Google Scholar 

  49. P. Bengtsson and T. Johannesson, Characterization of Microstructural Defects in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 1995, 4(3), pp. 245-251.

    Article  ADS  CAS  Google Scholar 

  50. J. Ilavsky, A.J. Allen, G.G. Long, S. Krueger, C.C. Berndt, and H. Herman, Influence of Spray Angle on the Pore and Crack Microstructure of Plasma Sprayed Deposits, J. Am. Ceram. Soc., 1997, 80(3), pp. 733-742.

    Article  CAS  Google Scholar 

  51. A.J. Allen, J. Ilavsky, G.G. Long, J.S. Wallace, C.C. Berndt, and H. Herman, Microstructural Characterisation of Yttria-stabilised Zirconia Plasma-sprayed Deposits using Multiple Small-Angle Neutron Scattering, Acta Mater., 2001, 49, pp. 1661-1675.

    Article  CAS  Google Scholar 

  52. A. Kulkarni, Z. Wang, T. Nakamura, S. Sampath, A. Goland, H. Herman, J. Allen, J. Ilavsky, G. Long, J. Frahm, and R.W. Steinbrech, Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings, Acta Mater., 2003, 51(9), pp. 2457-2475.

    Article  CAS  Google Scholar 

  53. H. Boukari, A.J. Allen, G.G. Long, J. Ilavsky, J.S. Wallace, C.C. Berndt, and H. Herman, Small-angle neutron scattering study of the role of feedstock particle size on the microstructural behavior of plasma-sprayed yttria-stabilized zirconia deposits, J. Mater. Res., 2003, 18(3), pp. 624-634.

    Article  ADS  CAS  Google Scholar 

  54. S. Paul, I.O. Golosnoy, A. Cipitria, T.W. Clyne, L. Xie, and M.R. Dorfman, Effect of Heat Treatment on Pore Architecture and Associated Property Changes in Plasma Sprayed TBCs, International Thermal Spray Conference CD (Beijing, China), ASM International, Materials Park, OH, USA, 2007.

  55. D.M. Zhu and R.A. Miller, Sintering and Creep Behaviour of Plasma-Sprayed Zirconia- and Hafnia-Based Thermal Barrier Coatings, Surf. Coat. Technol., 1998, 109(1-3), pp. 114-120.

    Article  Google Scholar 

  56. R.W. Trice, Y.J. Su, J.R. Mawdsley, K.T. Faber, A.R. De Arellano-Lopez, H. Wang, and W.D. Porter, Effect of Heat Treatment on Phase Stability, Microstructure, and Thermal Conductivity of Plasma-sprayed YSZ, J. Mater. Sci., 2002, 37(11), pp. 2359-2365.

    Article  CAS  Google Scholar 

  57. R. Siegel and C.M. Spuckler, Analysis of Thermal Radiation Effects on Temperatures in Turbine Engine Thermal Barrier Coatings, Mater. Sci. Eng. A, 1998, 245(2), pp. 150-159.

    Article  Google Scholar 

  58. V.A. Petrov and A.P. Chernyshev, Thermal-radiation Properties of Zirconia when heated by Laser Radiation up to the Temperature of High-rate Vaporization, High Temperature, 1999, 37(1), pp. 58-66.

    CAS  Google Scholar 

  59. J.I. Eldridge, C.M. Spuckler, K.W. Street, and J.R. Markham, Infrared Radiative Properties of Yttria-Stabilized Zirconia Thermal Barrier Coatings, Ceram. Eng. Sci. Proc., 2002, 23(4), pp. 417-430.

    Article  CAS  Google Scholar 

  60. E. Litovsky, M. Shapiro, and A. Shavit, Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials. 2. Refractories and ceramics with porosity exceeding 30%, J. Am. Ceram. Soc., 1996, 79(5), pp. 1366-1376.

    Article  CAS  Google Scholar 

  61. CRC, Handbook of Chemistry and Physics: a Ready-Reference Book of Chemical and Physical Data, 57th ed., R.C. Weast, Ed., CRC Press, Cleveland, OH, 1976. ISBN: 0878194568

  62. T.J. Lu, C.G. Levi, H.N.G. Wadley, and A.G. Evans, Distributed Porosity as a Control Parameter for Oxide Thermal Barriers made by Physical Vapor Deposition, J. Am. Ceram. Soc., 2001, 84, pp. 2937-2946.

    Article  CAS  Google Scholar 

  63. G. Kaye and T. Laby, Tables of Physical and Chemical Constants. 14th ed., London: Longman, 1973.

    Google Scholar 

  64. F.P. Incropera and D.P. Dewitt, Introduction to Heat Transfer, 3rd ed., NY, USA: John Wiley & Sons, Inc., 1996.

    Google Scholar 

  65. A.C. Fox and T.W. Clyne, The Gas Permeability of Plasma Sprayed Ceramic Coatings, in Thermal Spray: A United Forum for Scientific and Technological Advances, Proceedings of the 1st United Thermal Spray Conference, C.C. Berndt, Ed., ASM, Indianapolis, USA, 1998, p 483-490.

  66. A.C. Fox and T.W. Clyne, Oxygen Transport through the Zirconia Layer in Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2004, 184, pp. 311-321.

    Article  CAS  Google Scholar 

  67. M. Öziçik, Heat Conduction, New York: John Wiley & Sons, 1979.

    Google Scholar 

  68. T. Makino, T. Kunitomo, I. Sakai, and H. Kinoshita, Thermal Radiation Properties of Ceramic Materials, Heat Transfer. Japanese Research, 1984, 13(4), pp. 33-50.

    Google Scholar 

  69. F.A. Akopov, G.E. Val’yano, A.Y. Vorob’ev, V.N. Mineev, V.A. Petrov, A.P. Chernyshev, and G.P. Chernyshev, Thermal radiative properties of ceramic of cubic ZrO2 stabilized with Y2O3 at high temperatures, High Temperature, 2001, 39(2), pp. 244-254.

    Article  CAS  Google Scholar 

  70. F. Cabannes and D. Billard, Measurement of Infrared-Absorption of Some Oxides in Connection with the Radiative-Transfer in Porous and Fibrous Materials, Int. J. Thermophys., 1987, 8(1), pp. 97-118.

    Article  CAS  Google Scholar 

  71. A. Ferriere, L. Lestrade, and J.F. Robert, Optical properties of plasma-sprayed ZrO2-Y2O3 at high temperature for solar applications, J. Sol. Energy Eng. (Trans. ASME), 2000, 122(1), pp. 9-13.

    Article  CAS  Google Scholar 

  72. D.R. Clarke, Materials Selection Guidelines for Low Thermal Conductivity Barrier Coatings, Surf. Coat. Technol., 2003, 163-164, pp. 67-74.

    Article  CAS  Google Scholar 

  73. H.J. Ratzer-Scheibe, U. Schulz, and T. Krell, The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings, Surf. Coat. Technol., 2006, 200(18-19), pp. 5636-5644.

    Article  CAS  Google Scholar 

  74. H.J. Ratzer-Scheibe and U. Schulz, The effects of heat treatment and gas atmosphere on the thermal conductivity of APS and EB-PVD PYSZ thermal barrier coatings, Surf. Coat. Technol., 2007, 201, pp. 7880-7888.

    Article  CAS  Google Scholar 

  75. L. Xie, M.R. Dorfman, A. Cipitria, S. Paul, I.O. Golosnoy, and T.W. Clyne, Properties and Performance of High Purity Thermal Barrier Coatings, J. Therm. Spray Technol, 2007, 16(5-6), pp. 804-808.

    Article  ADS  CAS  Google Scholar 

  76. A. Cipitria, I.O. Golosnoy, and T.W. Clyne, Sintering Kinetics of Plasma-Sprayed Zirconia TBCs, J. Therm. Spray Technol., 2007, 16(5-6), pp. 809-815.

    Article  ADS  CAS  Google Scholar 

  77. A. Cipitria, I.O. Golosnoy, and T.W. Clyne, A Sintering Model for Plasma-Sprayed Zirconia TBCs. Part I: Free-Standing Coatings, Acta Mater., 2009, 57, pp. 980-992.

    Article  CAS  Google Scholar 

  78. S. Paul, A. Cipitria, S.A. Tsipas, and T.W. Clyne, Sintering Characteristics of Plasma Sprayed Zirconia Coatings containing different Stabilisers, Surf. Coat. Technol., 2009, 203, pp. 1069-1074.

    Article  CAS  Google Scholar 

  79. H.E. Eaton and R.C. Novak, Sintering Studies of Plasma Sprayed Zirconia, Surf. Coat. Technol., 1987, 32, pp. 227-236.

    Article  CAS  Google Scholar 

  80. S. Siebert, C. Funke, R. Vassen, and D. Stover, Changes in Porosity and Young’s Modulus due to Sintering of Plasma-Sprayed Thermal Barrier Coatings, J. Mater. Process. Technol., 1999, 93, pp. 217-223.

    Article  Google Scholar 

  81. J. Pan, A.C.F. Cocks, and S. Kucherenko, Finite Element Formulation of Coupled Grain-Boundary and Surface Diffusion with Grain-Boundary Migration, Proc. Roy. Soc. Lond. A: Math. Phys. Sci., 1997, 453, pp. 2161-2184.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  82. A.C.F. Cocks, S.P.A. Gill, and J. Pan, Modeling Microstructure Evolution in Engineering Materials, Advances in Applied Mechanics, 1999, 36, pp. 81-162.

    Article  Google Scholar 

  83. J. Pan, Modelling Sintering at Different Length Scales, Int. Mater. Rev., 2003, 48(2), pp. 69-85.

    Article  CAS  Google Scholar 

  84. R.G. Hutchinson, N.A. Fleck, and A.C.F. Cocks, A Sintering Model for Thermal Barrier Coatings, Acta Mater., 2006, 54(5), pp. 1297-1306.

    Article  CAS  Google Scholar 

  85. A. Cipitria, I.O. Golosnoy, and T.W. Clyne, A Sintering Model for Plasma-Sprayed Zirconia TBCs. Part II: Coatings bonded to a Rigid Substrate, Acta Mater., 2009, 57, pp. 993-1003.

    Article  CAS  Google Scholar 

  86. J.C. Tan, S.A. Tsipas, I.O. Golosnoy, S. Paul, J.A. Curran, and T.W. Clyne, A Steady-State Bi-Substrate Technique for Measurement of the Thermal Conductivity of Ceramic Coatings, Surf. Coat. Technol., 2006, 201(3-4), pp. 1414-1420.

    Article  CAS  Google Scholar 

  87. S.E. Gustafsson, Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials, Review of Scientific Instruments, 1990, 62(3), pp. 797-804.

    Article  MathSciNet  ADS  Google Scholar 

  88. S. Paul, “Pore Architecture in Ceramic Thermal Barrier Coatings, in Materials Science & Metallurgy,” Ph.D. Thesis, University of Cambridge, Cambridge, 2007.

  89. R. Vassen, R. Traeger, and D. Stover, Correlation Between Spraying Conditions and Microcrack Density and their Influence on Thermal Cycling Life of Thermal Barrier Coatings, J. Therm. Spray Technol., 2004,13(3), pp. 396-404.

    Article  ADS  CAS  Google Scholar 

  90. A. Kulkarni, J. Gutleber, S. Sampath, A. Goland, W.B. Lindquist, H. Herman, A.J. Allen, and B. Dowd, Studies of the microstructure and properties of dense ceramic coatings produced by high-velocity oxygen-fuel combustion spraying, Mater. Sci. Eng. A, 2004, 369(1-2), pp. 124-137.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support has come from a Basque Government scholarship (for AC), from EPSRC via a Platform Grant (for IOG) and from Sulzer Metco (US) Inc. There has been extensive technical collaboration with Sulzer Metco, particularly Mitch Dorfman, Clive Britton, and Steve Bomford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Clyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golosnoy, I.O., Cipitria, A. & Clyne, T.W. Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent Work. J Therm Spray Tech 18, 809–821 (2009). https://doi.org/10.1007/s11666-009-9337-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9337-y

Keywords

Navigation