Skip to main content

Advertisement

Log in

Influence of Plasma Immersion Ion Implantation on Ti-6Al-4V Alloy Tensile–Tensile Fatigue Behavior: The Introduction of Shot Peening as a Pretreatment

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the influence of combined plasma immersion ion implantation (PIII) and shot peening (SP) treatments on the axial fatigue strength of the Ti-6Al-4V alloy. The specimens were superficially treated with SP and PIII separately and in a combined way. The tensile–tensile fatigue behavior was investigated based on microstructural analysis, residual stress measurements, profilometry, Vickers microhardness, scanning electron microscopy, and transmission electron microscopy. Axial fatigue tests at room temperature were performed for the Ti-6Al-4V base material, PIII at 500 and 800 °C, SP process and the combination of both surface treatments. The residual stress measurements indicated that PIII treatment at 500 °C induced tensile residual stresses of 189 MPa on the material surface. The PIII treatment at 500 °C maintained the fatigue resistance of the Ti-6Al-4V alloy in the low-cycle fatigue region, while the PIII treatment at 800 °C reduced the fatigue life at all stress levels, from 32 to 96% reduction in lifetime. The combination of SP pretreatment and PIII treatment at 500 °C decreased the tensile residual stress value at the surface from 189 to 23 MPa, resulting in an improvement of the fatigue strength compared to only PIII treatment, for N = 106, the fatigue strength doubled in value. The analysis and tests presented in this work showed the potential of combining PIII and SP treatments to promote the surface protection without the substantial fatigue strength loss frequently associated to surface treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced from Ref 32 under the terms of the Creative Commons Attribution License 4.0

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Yonekura, J. Fujita, and K. Miki, Fatigue and Wear Properties of Ti-6Al-4V Alloy with Cr / CrN Multilayer Coating, Surf. Coat. Technol., 2015, 275, p 232–238.

    Article  CAS  Google Scholar 

  2. J. Su, X. Ji, J. Liu, J. Teng, F. Jiang, D. Fu, and H. Zhang, Revealing the Decomposition Mechanisms of Dislocations and Metastable α’ Phase and their Effects on Mechanical Properties in a Ti-6Al-4V Alloy, J. Mater. Sci. Technol., 2022, 107, p 136–148.

    Article  CAS  Google Scholar 

  3. F. Bridier, P. Villechaise, and J. Mendez, Analysis of the Different Slip Systems Activated by Tension in a α/β Titanium Alloy in Relation with Local Crystallographic Orientation, Acta Mater., 2005, 53, p 555–567.

    Article  CAS  Google Scholar 

  4. L. Wanying, Effect of Different Heat Treatments on Microstructure and Mechanical Properties of Ti6Al4V Titanium Alloy, Rare Metal. Mater. Eng., 2017, 46, p 634–639.

    Article  Google Scholar 

  5. C. Tang, D. Liu, B. Tang, X. Zhang, L. Qin, and C. Liu, Influence of Plasma Molybdenizing and Shot Peening on Fretting Damage Behavior of Titanium Alloy, Appl. Surf. Sci., 2016, 390, p 946–958.

    Article  CAS  Google Scholar 

  6. M.Y. Costa, M.O. Cioffi, M.L. Venditti, and H.J. Voorwald, Fatigue Fracture Behavior of Ti-6Al-4V PVD Coated, Proc Eng., 2010, 2(1), p 1859–1864.

    Article  Google Scholar 

  7. V.M. de Oliveira, M.C. da Silva, C.G. Pinto, P.A. Suzuki, J.P. Machado, V.M. Chad, and M.J. Barboza, Short-Term Creep Properties of Ti-6Al-4V Alloy Subjected to Surface Plasma Carburizing Process, J. Mater. Res. Technol., 2015, 4(4), p 359–366.

    Article  CAS  Google Scholar 

  8. A. Zammit, M. Attard, P. Subramaniyan, S. Levin, L. Wagner, J. Cooper, L. Espitalier, and G. Cassar, Investigations on the Adhesion and Fatigue Characteristics of Hybrid Surface-Treated Titanium Alloy, Surf. Coat. Technol., 2022, 431, p 128002.

    Article  CAS  Google Scholar 

  9. S. Hémery, A. Nait-Ali, M. Guéguen, and P. Villechaise, Mechanical Study of Crystalline Orientation Distribution in Ti-6Al-4V: An Assessment of Micro-Texture Induced Load Partitioning, Mater. Des., 2018, 137, p 22–32.

    Article  Google Scholar 

  10. V. Saraiva, F. Bridier, and P. Bocher, Predicting the Effects of Material Properties Gradient and Residual Stresses on the Bending Fatigue Strength of Induction Hardened Aeronautical Gears, I. J. Fatigue, 2016, 85, p 70–84.

    Article  Google Scholar 

  11. C.B. Mello, M. Ueda, M.M. Silva, H. Reuther, L. Pichon, and C.M. Lepienski, Tribological Effects of Plasma Immersion ion Implantation Heating Treatments on Ti-6Al-4V Alloy, Wear, 2009, 267, p 867–873.

    Article  CAS  Google Scholar 

  12. T.A. Minto, V.M.C.A. Oliveira, and H.J.C. Voorwald, Plasma Immersion Ion Implantation: Influence on the Rotating Bending Fatigue Strength of AA 7050-T7451 Aluminum Alloy Int, J. Fatigue, 2017, 103, p 17–27.

    Article  CAS  Google Scholar 

  13. H. Liu, B. Tang, L. Wang, X. Wang, and B. Jiang, Fatigue Life and Mechanical Behaviors of Bearing Steel by Nitrogen Plasma Immersion Ion Implantation, Surf. Coat. Technol., 2007, 201, p 5273–5277.

    Article  CAS  Google Scholar 

  14. F. Abdi and H. Savaloni, Surface nanostructure modification of Al substrates by N + ion implantation and their corrosion inhibition Trans, Nonferrous Met. Soc. China, 2016, 27, p 701–710.

    Article  Google Scholar 

  15. Y.C. Bastos, M.F. Fernandes, V.M. de Oliveira Velloso, T.A. Minto, and H.J. Voorwald, Plasma Immersion Ion Implantation and Shot Peening Influence on the Fatigue Strength of AA 7050-T7451 Aluminum Alloy, Eng. Res. Express., 2020, 2(1), p 015015.

    Article  Google Scholar 

  16. L. Wang, L. Zhou, L. Liu, W. He, X. Pan, X. Nie, and S. Luo, Fatigue Strength Improvement in Ti-6Al-4V Subjected to Foreign Object Damage by Combined Treatment of Laser Shock Peening and Shot Peening, Int. J. Fatigue., 2022, 155, p 106581.

    Article  CAS  Google Scholar 

  17. H. Xiao, X. Liu, Q. Lu, T. Hu, Y. Hong, C. Li, R. Zhong, and W. Chen, Promoted Low-Temeperature Plasma Nitriding for Improving Wear Performance of Arc-Deposited Ceramic Coatings on Ti6Al4V Alloy Via Shot Peening Pretreatment, J. Mater. Res. Technol., 2022, 19, p 2981–2990.

    Article  CAS  Google Scholar 

  18. S.Q. Wang, W.Y. Li, Y. Zhou, X. Li, and D.L. Chen, Tensile and Fatigue Behavior of Electron Beam Welded Dissimilar Joints of Ti-6Al-4V and IMI834 Titanium Alloys, Mater. Sci. Eng. A., 2016, 649, p 146–152.

    Article  CAS  Google Scholar 

  19. M.F. Fernandes, M.A. Torres, M.D. Fonseca, and C.A. Baptista, Investigation of Residual Stress, Stress Relaxation and Work Hardening Effects Induced by Shot Peening on the Fatigue Life of AA 6005-T6 Aluminum Alloy, Mater. Res. Express., 2020, 6(12), p 1265i2.

    Article  Google Scholar 

  20. S.R. Hosseini and A. Ahmadi, Evaluation of the Effects of Plasma Nitriding Temperature and Time on the Characterisation of Ti 6Al 4V Alloy, Vacuum, 2013, 87, p 30–39.

    Article  CAS  Google Scholar 

  21. D. She, W. Yue, Z. Fu, C. Wang, X. Yang, and J. Liu, Effects of Nitriding Temperature on Microstructures and Vacuum Tribological Properties of Plasma-Nitrided Titanium, Surf. Coat. Technol., 2015, 264, p 32–40.

    Article  CAS  Google Scholar 

  22. S. Li, X. Zhao, Y. An, W. Deng, G. Hou, E. Hao et al., Effect of Deposition Temperature on the Mechanical, Corrosive and Tribological Properties of Mullite Coatings, Ceram. Int., 2018, 44, p 6719–6729.

    Article  CAS  Google Scholar 

  23. T. Morita, K. Asakura, and C. Kagaya, Effect of Combination Treatment on Wear Resistance and Strength of Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2014, 618, p 438–446.

    Article  CAS  Google Scholar 

  24. K. Farokhzadeh and A. Edrisy, Fatigue Improvement in Low Temperature Plasma Nitrided Ti-6Al-4V Alloy, Mater. Sci. Eng. A., 2015, 620, p 435–444.

    Article  Google Scholar 

  25. D. Manova, S. Mändl, H. Neumann, and B. Rauschenbach, Wear Behaviour of Martensitic Stainless Steel After PIII Surface Treatment, Surf. Coat. Technol., 2005, 200, p 137–140.

    Article  CAS  Google Scholar 

  26. M. Ueda, M.M. Silva, C. Otani, H. Reuther, M. Yatsuzuka, and C.M. Lepienski, Improvement of Tribological Properties of Ti6Al4V by Nitrogen Plasma Immersion Ion Implantation, Surf. Coat. Technol., 2003, 169, p 408–410.

    Article  Google Scholar 

  27. J.H. Chang, S. Wang, H. Pan, M.F. Wu, D.K. Shiau, and H.H. Huang, Nitrogen Plasma Immersion Ion Implantation Treatment of Ti6Al7Nb Alloy for Bone-Implant Applications: Enhanced in vitro Biological Responses and in vivo Initial Bone-Implant Contact, Surf. Coat. Technol., 2021, 405, p 126551.

    Article  Google Scholar 

  28. A. Shanaghi and P.K. Chu, Enhancement of Mechanical Properties and Corrosion Resistance of NiTi Alloy by Carbon Plasma Immersion Ion Implantation, Surf. Coat. Technol., 2018, 365, p 52–57.

    Article  Google Scholar 

  29. B.C.E. Kurelo, G.B. Souza, F.C. Serbena, W.R. Oliveira, C.E.B. Marino, and L.A. Taminato, Performance of Nitrogen Ion-Implanted Supermartensitic Stainless Steel in Chlorine- and Hydrogen-Rich Environments, Surf. Coat. Technol., 2018, 351, p 29–41.

    Article  Google Scholar 

  30. V.M.C.A. Oliveira, M.O.H. Cioffi, M.J.R. Barboza, R. Landers, B. Schmitt, D.C.A.R. Tapia, and H.J.C. Voorwald, Plasma Immersion Ion Implantation (PIII) Influence on Ti-6Al-4V Alloy: Frequency Effect, Int J Fatigue, 2017, 109, p 157–165.

    Article  Google Scholar 

  31. V. Velloso, L. Nozaki, D. Tapia, M.O. Cioffi, R. Oliveira, M. Barboza et al., Fatigue Behavior of Ti-6Al-4V Alloy Modified by Plasma Immersion Ion Implantation: Temperature Effect, MATEC Web. Conf., 2018, 165, p 2–7.

    Article  Google Scholar 

  32. Q. Yang, W. Zhou, Z. Niu, X. Zheng, Q. Wang, X. Fu et al., Effect of Different Surface Asperities and Surface Hardness Induced by Shot-Peening on the Fretting Wear Behavior of Ti-6Al-4V, Surf. Coat. Technol., 2018, 349, p 1098–1106.

    Article  CAS  Google Scholar 

  33. Z. Xu, J. Dunleavey, M. Antar, R. Hood, S.L. Soo, G. Kucukturk et al., The Influence of Shot Peening on the Fatigue Response of Ti-6Al-4V Surfaces Subject to Different Machining Processes, Int. J. Fatigue, 2018, 111, p 196–207.

    Article  CAS  Google Scholar 

  34. H.J. Voorwald, L.F. dos Santos Vieira, V.M. de Oliveira Velloso, M.F. Fernandes, and M.O. Cioffi, Investigation of HVOF-Sprayed WC-and NiCr-Based Coatings to Improve Corrosion and Wear Performance of High-Strength Steel, J. Braz. Soc. Mech. Sci. Eng., 2022, 44(3), p 96.

    Article  CAS  Google Scholar 

  35. M. Santos, J. Rodrigo, M.F. Fernandes, V.M.O. Velloso, and H.J.C. Voorwald, Fatigue Analysis of Threaded Components with Cd and Zn-Ni Anticorrosive Coatings, Metals, 2021, 11, p 1455.

    Article  Google Scholar 

  36. ASTM F136-13, Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), ASTM International, West Conshohocken, PA, (2013)

  37. SAE AMS B Finishes Processes and Fluids Committee, SAE Standard AMS 2430—Shot Peening, Automatic (2009)

  38. M. Thomas, T. Lindley, D. Rugg, and M. Jackson, The Effect of Shot Peening on the Microstructure and Properties of a Near-Alpha Titanium Alloy Following High Temperature Exposure, Acta Mater, 2012, 60, p 5040–5048.

    Article  CAS  Google Scholar 

  39. B.K.C. Ganesh, W. Sha, N. Ramanaiah, and A. Krishnaiah, Effect of Shot Peening on Sliding Wear and Tensile Behavior of Titanium Implant Alloys, Mater. Des., 2014, 56, p 480–486.

    Article  CAS  Google Scholar 

  40. S. Bagherifard, Enhancing the Structural Performance of Lightweight Metals by Shot Peening, Adv. Eng. Mater., 2019, 21, p 1801140.

    Article  Google Scholar 

  41. R.M. Oliveira, J.A.N. Gonçalves, M. Ueda, J.O. Rossi, and P.N. Rizzo, A New High-Temperature Plasma Immersion Ion Implantation System with Electron Heating, Surf. Coat. Technol., 2010, 204, p 3009–3012.

    Article  CAS  Google Scholar 

  42. X. Yang and R. Liu, Machining Titanium and its Alloys, Mach. Sci. Technol., 1999, 3, p 107–139.

    Article  CAS  Google Scholar 

  43. D. Setti, M.K. Sinha, S. Ghosh, and P.V. Rao, Performance Evaluation of Ti-6Al-4V Grinding Using Chip Formation and Coefficient of Friction Under the Influence of Nanofluids, I. J. Mach. Tools Manuf., 2015, 88, p 237–248.

    Article  Google Scholar 

  44. International A. ASTM E466-15 Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. West Conshohocken (2015)

  45. ASTM. ASTM E739 - Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data Statistical Analysis of Fatigue Data, (2015)

  46. ISO 12107:2012 Metallic materials — Fatigue testing — Statistical Planning and Analysis of Data. Geneva, Switzerland, (2003)

  47. S. Jagatheeshkumar, M. Raguraman, S.P. AVS, B.K. Nagesha, and U. Chandrasekhar, Study of Residual Stresses and Distortions from the Ti6Al4V Based Thin-Walled Geometries Built Using LPBF Process, Def. Technol., 2023 https://doi.org/10.1016/j.dt.2023.01.002

    Article  Google Scholar 

  48. H. Zhang, Z. Cai, J. Chi, R. Sun, Z. Che, H. Zhang, and W. Guo, Fatigue Crack Growth in Residual Stress Fields of Laser Shock Peened Ti6Al4V Titanium Alloy, J All Com, 2021, 887, p 161427.

    Article  CAS  Google Scholar 

  49. M.V. Nataraj and S. Swaroop, Effects of Power Density on Residual Stress and Microstructural Behavior of Ti-2.5 Cu Alloy by Laser Shock Peening without Coating, Vacuum, 2023, 213, p 112078.

    Article  CAS  Google Scholar 

  50. Manson, SS and M. Hirschberg MH, Fatigue: An Interdisciplinary Approach, Syracuse University Press, Syracuse, NY, 1964, p. 133.

  51. D. Munz, Workhardening, Slip Band Formation and Crack Initiation During Fatigue of Titanium, Eng. Fract. Mech., 1973, 5, p 353–364.

    Article  CAS  Google Scholar 

  52. H. Knobbe, P. Köster, H.J. Christ, C.P. Fritzen, and M. Riedler, Initiation and Propagation of Short Fatigue Cracks in Forged Ti6Al4V, Proc. Eng., 2010, 2, p 931–940.

    Article  CAS  Google Scholar 

  53. Y. Ma, Q. Xue, H. Wang, S. Huang, J. Qiu, X. Feng, J. Lei, and R. Yang, Deformation Twinning in Fatigue Crack Tip Plastic Zone of Ti-6Al-4V Alloy with Widmanstatten Microstructure, Mater. Charact., 2017, 132, p 338–347.

    Article  CAS  Google Scholar 

  54. J. Qiu, X. Feng, Y. Ma, J. Lei, Y. Liu, A. Huang et al., Fatigue Crack Growth Behavior of Beta-Annealed Ti-6Al-2Sn-4Zr-xMo (x = 2, 4 and 6) Alloys: Influence of Microstructure and Stress Ratio, Int J Fatigue, 2016, 83, p 150–160.

    Article  CAS  Google Scholar 

  55. S. Griza, C.E.C. de Andrade, W.W. Batista, E.K. Tentardini, and T.R. Strohaecker, Case Study of Ti6Al4V Pedicle Screw Failures Due to Geometric and Microstructural Aspects, Eng. Fail. Anal., 2012, 25, p 133–143.

    Article  CAS  Google Scholar 

  56. H. Shibata, K. Tokaji, T. Ogawa, and C. Hori, The Effect of Gas Nitriding on Fatigue Behaviour in Titanium Alloys, Int. J. Fatigue, 1994, 16, p 370–376.

    Article  CAS  Google Scholar 

  57. W.J. Evans, Optimising Mechanical Properties in alpha+beta Titanium Alloys, Mater. Sci. Eng. A, 2002, 243, p 89–96.

    Article  Google Scholar 

  58. A. Soltani-Tehrani, M. Habibnejad-Korayem, S. Shao, M. Haghshenas, and N. Samsaei, Ti-6Al-4V Powder Characteristics in Laser Powder Bed Fusion: The Effect on Tensile and Fatigue Behavior, Add. Manuf., 2022, 51, p 102584.

    CAS  Google Scholar 

  59. Q. Yang, W. Zhou, Z. Niu, X. Zheng, Q. Wang, X. Fu et al., Effect of Different Surface Asperities and Surface Hardness Induced by Shot Peening on the Fretting Wear Behavior of Ti-6Al-4V, Surf. Coat. Technol., 2018, 349, p 1098–1106.

    Article  CAS  Google Scholar 

  60. Q. Yang, W. Zhou, Y. Zhong, X. Zhang, X. Fu, G. Chen et al., Effect of Shot-Peening on the Fretting Wear and Crack Initiation Behavior of Ti-6Al-4V Dovetail Joint Specimens, Int. J. Fatigue, 2018, 107, p 83–95.

    Article  CAS  Google Scholar 

  61. H. Kovaci, I. Hacisalihoglu, A.F. Yetim, and A. Çelik, Effects of Shot Peening Pre-Treatment and Plasma Nitriding Parameters on the Structural, Mechanical and Tribological Properties of AISI4140 Low-Alloy Steel, Surf. Coat. Technol., 2019, 358, p 256–265.

    Article  CAS  Google Scholar 

  62. A.F. Yetim, H. Kovaci, Y. Uzun, H. Tekdir, and A. Çelik, A Comprehensive Study on the Fatigue Properties of Duplex Surface Treated Ti6Al4V by Plasma Nitriding and DLC Coating, Surf. Coat. Technol., 2023, 458, p 129367.

    Article  CAS  Google Scholar 

  63. K. Lynn and D.L. DuQuesnay, Hydroxyapatite-coated Ti-6Al-4V: Part 1: The Effect of Coating Thickness on Mechanical Fatigue Behaviour, Biomater, 2002, 23, p 1937–1946.

    Article  CAS  Google Scholar 

  64. C.X. Li, D. Horspool, and H. Dong, Effect of Ceramic Conversion Surface Treatment on Fatigue Properties of Ti6Al4V Alloy, Int. J. Fatigue, 2007, 29, p 2273–2280.

    Article  CAS  Google Scholar 

  65. D. Luquiau, X. Feaugas, and M. Clavel, Cyclic softening of the Ti-10V-2Fe-3Al Titanium Alloy, Mater. Sci. Eng., A, 1997, 224, p 146–156.

    Article  Google Scholar 

  66. R. Salloom, R. Banerjee, and S.G. Srinivasan, Effect of β-Stabilizer Elements on Stacking Faults Energies and Ductility of α-Titanium Using First-Principles Calculations, J. Appl. Phys., 2016, 17, p 120.

    Google Scholar 

  67. S. Joseph, T.C. Lindley, and D. Dye, Dislocation Interactions and Crack Nucleation in a Fatigued Near-Alpha Titanium Alloy, Int. J. Plast., 2018, 110, p 38–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by São Paulo Research Foundation (FAPESP), FAPESP grant numbers 2015/00331-2 and 2016/11731-4, and National Council for Scientific and Technological Development (CNPq), CNPQ grant number 303832/2014-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. C. A. Oliveira.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. All of the sources of funding for the work described in this publication are acknowledged. We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property. We understand that this Corresponding Author is the sole contact for the Editorial process. He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, V.M.C.A., Nozaki, L., Fernandes, M.F. et al. Influence of Plasma Immersion Ion Implantation on Ti-6Al-4V Alloy Tensile–Tensile Fatigue Behavior: The Introduction of Shot Peening as a Pretreatment. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08603-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08603-z

Keywords

Navigation