Skip to main content
Log in

Corrosion Resistance Improvement of an Extruded Mg-Gd-Y-Zn-Zr-Ca via Aging Treatment

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of aging treatment on corrosion properties of an extruded Mg-8.9Gd-2.8Y-1.8Zn-0.4Zr-0.2Ca (wt.%) alloy were investigated. The as-extruded alloy was consisted of un-dynamically recrystallized region containing lamellar long period stacking ordered (LPSO) phase and block-shaped LPSO phase, finely recrystallized grains and small amounts of Mg-RE phase. After aging treatment, part of lamellar LPSO phases was dissolved into the matrix and replaced by recrystallized grains. The size of recrystallized grain was increased from 1.8 μm for the as-extruded sample and to 3.5 μm for the peak-aged sample. Corrosion tests indicated that aging treatment effectively improved the corrosion resistance of the as-extruded Mg-8.9Gd-2.8Y-1.8Zn-0.4Zr-0.2Ca (wt.%) alloy. The lamellar LPSO phases with a low potential were preferentially corroded, and the homogeneous microstructure of the peak-aged sample effectively reduced the possibility of micro-galvanic corrosion. Hence, the peak-aged sample with a more homogeneous microstructure and small amount of lamellar LPSO phase showed a better corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Nie, X. Kang, K. Deng, Y. Guo, J. Han and Z. Zhu, Development of Mg-Zn-Y-Ca Alloys Containing Icosahedral Quasicrystal Phase Through Trace Addition of Y, J. Mater. Res., 2018, 33(18), p 2806–2816.

    Article  CAS  Google Scholar 

  2. S.H. Huang, Microstructure and Mechanical Properties of a Ag Micro-Alloyed Mg-5Sn Alloy, J. Mater. Eng. Perform., 2018, 27(7), p 3199–3205.

    Article  CAS  Google Scholar 

  3. H. Mirzadeh, High Strain Rate Superplasticity Via Friction Stir Processing (FSP): A Review, Mater. Sci. Eng. A, 2021, 819, p 141499.

    Article  CAS  Google Scholar 

  4. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus and W.S. Miller, Recent Development in Aluminium Alloys for Aerospace Applications, Mater. Sci. Eng. A, 2000, 280(1), p 102–107.

    Article  Google Scholar 

  5. H. Mirzadeh, Quantification of the Strengthening Effect of Rare Earth Elements During Hot Deformation of Mg-Gd-Y-Zr Magnesium Alloy, J. Mater. Res. Technol., 2016, 5(1), p 1–4.

    Article  CAS  Google Scholar 

  6. Y.Z. Du, D.J. Liu and Y.F. Ge, Effects of Ce Addition on Mechanical and Corrosion Properties of the As-Extruded Mg-Zn-Ca Alloy, J. Mater. Eng. Perform., 2021, 30(1), p 488–496.

    Article  CAS  Google Scholar 

  7. V.E. Bazhenov, S.S. Saidov, Y.V. Tselovalnik, O.O. Voropaeva, I.V. Plisetskaya, A.A. Tokar, A.I. Bazlov, V.A. Bautin, A.A. Komissarov, A.V. Koltygin and V.D. Belov, Comparison of Castability, Mechanical, and Corrosion Properties of Mg-Zn-Y-Zr Alloys Containing LPSO and W Phases, Trans. Nonferr. Metal. Soc., 2021, 31(5), p 1276–1290.

    Article  CAS  Google Scholar 

  8. M. Lotfpour, M. Emamy and C. Dehghanian, Influence of Cu Addition on the Microstructure, Mechanical, and Corrosion Properties of Extruded Mg-2%Zn Alloy, J. Mate. Eng. Perform., 2020, 29(5), p 2991–3003.

    Article  CAS  Google Scholar 

  9. L.B. Tong, J.H. Chu, W.T. Sun, C. Xu, D.N. Zou, K.S. Wang, S. Kamado and M.Y. Zheng, Achieving an Ultra-High Strength and Moderate Ductility in Mg-Gd-Y-Zn-Zr Alloy Via a Decreased-Temperature Multi-directional Forging, Mater. Charact., 2021, 171, p 110804.

    Article  CAS  Google Scholar 

  10. K. Li, V.S.Y. Injeti, R.D.K. Misra, L.G. Meng and X.G. Zhang, The Contribution of Long-Period Stacking-Ordered Structure (LPSO) to High Strength-High Ductility Combination and Nanoscale Deformation Behavior of Magnesium-Rare Earth Alloy, Mater. Sci. Eng. A, 2018, 713, p 112–117.

    Article  CAS  Google Scholar 

  11. C.Q. Li, D.K. Xu, Z.R. Zeng, B.J. Wang, L.Y. Sheng, X.B. Chen and E.H. Han, Effect of Volume Fraction of LPSO Phases on Corrosion and Mechanical Properties of Mg-Zn-Y Alloys, Mater. Des., 2017, 121, p 430–441.

    Article  CAS  Google Scholar 

  12. J. Wang, T. Li, H.X. Li, Y.Z. Ma, K.N. Zhao, C.L. Yang, J.S. Zhang, Effect of Trace Ni Addition on Microstructure, Mechanical and Corrosion Properties of the Extruded Mg-Gd-Y-Zr-Ni Alloys for Dissoluble Fracturing Tools, J. Magnes. Alloy., 2020 (in press).

  13. S. Yin, W. Duan, W. Liu, L. Wu and Z. Zhang, Influence of Specific Second Phases on Corrosion Behaviors of Mg-Zn-Gd-Zr Alloys, Corros. Sci., 2019, 166, p 108419.

    Article  Google Scholar 

  14. M. Yamasaki, S. Izumi, Y. Kawamura and H. Habazaki, Corrosion and Passivation Behavior of Mg-Zn-Y-Al Alloys Prepared by Cooling Rate-Controlled Solidification, Appl. Surf. Sci., 2011, 257(19), p 8258–8267.

    Article  CAS  Google Scholar 

  15. Y. Wang, Y. Zhang, P. Wang, D. Zhang and H. Jiang, Effect of LPSO Phases and Aged-Precipitations on Corrosion Behavior of as-Forged Mg-6Gd-2Y-1Zn-0.3Zr Alloy, J. Mater. Res. Technol., 2020, 9(4), p 7087–7099.

    Article  CAS  Google Scholar 

  16. L. Wu and H. Li, Effect of Selective Oxidation on Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy, Corros. Sci., 2018, 142, p 238–248.

    Article  CAS  Google Scholar 

  17. J.F. Nie and B.C. Muddle, Precipitation Hardening of Mg-Ca(-Zn) Alloys, Scr. Mater., 1997, 37(37), p 1475–1481.

    Article  CAS  Google Scholar 

  18. C. Xu, T. Nakata, X.G. Qiao, H.S. Jiang, W.T. Sun, Y.C. Chi, M.Y. Zheng and S. Kamado, Effect of Extrusion Parameters on Microstructure and Mechanical Properties of Mg-7.5Gd-2.5Y-3.5Zn-0.9Ca-0.4Zr (wt%) alloy, Mater. Sci. Eng. A, 2017, 685, p 159–167.

    Article  CAS  Google Scholar 

  19. H. Jiang, X. Qiao, C. Xu, S. Kamado, K. Wu and M. Zheng, Influence of Size and Distribution of W Phase on Strength and Ductility of High Strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca Alloy Processed by Indirect Extrusion, J. Mater. Sci. Technol., 2018, 34(2), p 277–283.

    Article  CAS  Google Scholar 

  20. T. Chen, Z. Chen, J. Shao, R. Wang, L. Mao and C. Liu, Evolution of LPSO Phases in a Mg-Zn-Y-Gd-Zr Alloy During Semi-Continuous Casting, Homogenization and Hot Extrusion, Mater. Des., 2018, 152, p 1–9.

    Article  Google Scholar 

  21. Y.M. Zhu, M. Weyland, A.J. Morton, K. Oh-Ishi, K. Hono and J.F. Nie, The Building Block of Long-Period Structures in Mg-RE-Zn Alloys—ScienceDirect, Scr. Mater., 2009, 60(11), p 980–983.

    Article  CAS  Google Scholar 

  22. C. Xu, S.W. Xu, M.Y. Zheng, K. Wu, E.D. Wang, S. Kamado, G.J. Wang and X.Y. Lv, Microstructures and Mechanical Properties of High-Strength Mg-Gd-Y-Zn-Zr Alloy Sheets Processed by Severe Hot Rolling, J. Alloys Compd., 2012, 524, p 46–52.

    Article  CAS  Google Scholar 

  23. H.X. Shao, Q.Z. Yang and L.X. Ma, Strengthening and Toughening Mechanisms in Mg-Zn-Y Alloy with a Long Period Stacking Ordered Structure, Acta Mater., 2010, 58(14), p 4760–4771.

    Article  CAS  Google Scholar 

  24. J.D. Robson, D.T. Henry and B. Davis, Particle Effects on Recrystallization in Magnesium–Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57(9), p 2739–2747.

    Article  CAS  Google Scholar 

  25. A. Jx, B. Zca, A. Js, C.A. Tao, L.A. Xia, A. Cl, Evolution of Long-Period Stacking Ordered Phases and Their Effect on Recrystallization in Extruded Mg-Gd-Y-Zn-Zr alloy During Annealing—ScienceDirect, Mater. Charact., 2020, 167. (in press).

  26. Y.Z. Bao, Y. Adachi, Y. Toomine, P.G. Xu, T. Suzuki and Y. Tomota, Dynamic Recrystallization by Rapid Heating Followed by Compression for a 17Ni-0.2 C Martensite Steel, Scr. Mater., 2005, 53(12), p 1471–1476.

    Article  CAS  Google Scholar 

  27. L. Liu, X. Zhou, S. Yu, J. Zhang and Z. Su, Effects of Heat Treatment on Mechanical Properties of an Extruded Mg-4.3Gd-3.2Y-1.2Zn-0.5Zr Alloy and Establishment of its Hall–Petch Relation, J. Magnes. Alloys, 2020 (in press).

  28. C. Xu, M.Y. Zheng, K. Wu, E.D. Wang and Y.T. Liu, Effect of Final Rolling Reduction on the Microstructure and Mechanical Properties of Mg-Gd-Y-Zn-Zr Alloy Sheets, Mater. Sci. Eng. A, 2013, 559, p 232–240.

    Article  CAS  Google Scholar 

  29. C. Xu, M.Y. Zheng, K. Wu, E.D. Wang, G.H. Fan, S.W. Xu, S. Kamado, X.D. Liu, G.J. Wang and X.Y. Lv, Effect of Ageing Treatment on the Precipitation Behaviour of Mg-Gd-Y-Zn-Zr Alloy, J. Alloys Compd., 2013, 550, p 50–56.

    Article  CAS  Google Scholar 

  30. Y. Meng, J. Yu, K. Liu, H. Yu and H. Wang, The Evolution of Long-Period Stacking Ordered Phase and Its Effect on Dynamic Recrystallization in Mg-Gd-Y-Zn-Zr Alloy Processed by Repetitive Upsetting-Extrusion, J. Alloys Compd., 2020, 828, p 154454.

    Article  CAS  Google Scholar 

  31. J. Zhang, J. Xu, W. Cheng, C. Chen and J. Kang, Corrosion Behavior of Mg-Zn-Y Alloy with Long-Period Stacking Ordered Structures, J. Mater. Sci. Technol., 2012, 28(12), p 1157–1162.

    Article  CAS  Google Scholar 

  32. J. Liu, Y. Song, J. Chen, P. Chen, D. Shan and E.-H. Han, The Special Role of Anodic Second Phases in the Micro-galvanic Corrosion of EW75 Mg Alloy, Electrochim. Acta, 2016, 189, p 190–195.

    Article  CAS  Google Scholar 

  33. F. Shi, C.-Q. Wang and Z.-M. Zhang, Microstructures, Corrosion and Mechanical Properties of As-Cast Mg-Zn-Y-(Gd) alloys, Trans. Nonferr. Metal. Soc., 2015, 25(7), p 2172–2180.

    Article  CAS  Google Scholar 

  34. J. Liu, L. Yang, C. Zhang, B. Zhang and T. Zhang, Significantly Improved Corrosion Resistance of Mg-15Gd-2Zn-0.39Zr Alloys: Effect of Heat-Treatment, J. Mater. Sci. Technol., 2019, 35(8), p 1644–1654.

    Article  Google Scholar 

  35. Y.S. Huang, X.T. Zeng, X.F. Hu and F.M. Liu, Corrosion Resistance Properties of Electroless Nickel Composite Coatings, Electrochim. Acta, 2004, 49(25), p 4313–4319.

    Article  CAS  Google Scholar 

  36. Y. Wang, Y. Zhang, P. Wang, D. Zhang, B. Yu, Z. Xu and H. Jiang, Effect of LPSO Phases and Aged-Precipitations on Corrosion Behavior of as-Forged Mg-6Gd-2Y-1Zn-0.3Zr Alloy, J. Mater. Res. Technol., 2020, 9(4), p 7087–7099.

    Article  CAS  Google Scholar 

  37. X. Zhang, Q. Wang, F. Chen, Y. Wu, Z. Wang and Q. Wang, Relation Between LPSO Structure and Biocorrosion Behavior of Biodegradable GZ51K Alloy, Mater. Lett., 2015, 138, p 212–215.

    Article  CAS  Google Scholar 

  38. T. Zhang, Y. Shao, G. Meng, Z. Cui and F. Wang, Corrosion of Hot Extrusion AZ91 Magnesium Alloy: I-Relation Between the Microstructure and Corrosion Behavior, Corros. Sci., 2011, 53(5), p 1960–1968.

    Article  CAS  Google Scholar 

  39. G.L. Song and Z. Xu, The Surface, Microstructure and Corrosion of Magnesium Alloy AZ31 Sheet, Electrochim. Acta, 2010, 55(13), p 4148–4161.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by China Postdoctoral Science Foundation funded project (Nos. 2019M653703 and 2020T130523) and Shannxi Provincial Natural Science Foundation (No. 2018JQ8017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhou Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Du, Y., Dong, D. et al. Corrosion Resistance Improvement of an Extruded Mg-Gd-Y-Zn-Zr-Ca via Aging Treatment. J. of Materi Eng and Perform 31, 2909–2917 (2022). https://doi.org/10.1007/s11665-021-06455-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06455-z

Keywords

Navigation