Skip to main content
Log in

Comparison of the Effect of Equal Channel Angular Pressing, Expansion Equal Channel Angular Pressing, and Hybrid Equal Channel Angular Pressing on Mechanical Properties of AZ31 Mg Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, Hybrid Equal Channel Angular Pressing (Hybrid ECAP) method was obtained by applying Equal Channel Angular Pressing (ECAP) and Expansion Equal Channel Angular Pressing (Exp.-ECAP) methods successively. These three angular pressing methods were applied to AZ31 Mg alloy using the same process parameters. First, AZ31 Mg specimens were produced in accordance with ECAP, Exp.-ECAP, and Hybrid ECAP dies. Then, changes in the microstructure of the processed specimens were examined using optical microscope, scanning electron microscope, energy dispersive spectrometry, transmission electron microscope, and x-ray diffraction methods. Besides, changes in the mechanical properties of the processed specimens were observed by performing hardness and tensile tests. As a result of the study, it was found that the Exp.-ECAP method provided higher increase in mechanical properties with more homogeneous microstructure and hardness distribution than the ECAP method. Additionally, the obtained Hybrid ECAP method continued to increase the mechanical properties of the alloy and made the microstructure and hardness distribution more homogeneous than the ECAP method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.Z. Valiev, Superior Strength in Ultrafine-Grained Materials Produced by SPD Processing, Mater. Trans., 2014, 55, p 13–18. https://doi.org/10.2320/matertrans.MA201325

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103.

    Article  CAS  Google Scholar 

  3. K.H.Yang, W.Z. Chen, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation. Suxing Gongcheng Xuebao/Journal Plast. Eng., 2010, 17

  4. J. Sun, B. Xu, Z. Yang, H. Zhou, J. Han, Y. Wu, D. Song, Y. Yuan, X. Zhuo, H. Liu and A. Ma, Achieving Excellent Ductility in High-Strength Mg-10.6Gd-2 Ag Alloy via Equal Channel Angular Pressing, J. Alloys Compd., 2020 https://doi.org/10.1016/j.jallcom.2019.152688

    Article  Google Scholar 

  5. R.Z. Valiev and T.G. Langdon, Principles of Equal Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981.

    Article  CAS  Google Scholar 

  6. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T.G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials, Scr. Mater., 1996, 35, p 143–146.

    Article  CAS  Google Scholar 

  7. W. Skrotzki, A. Pukenas, E. Odor, B. Joni, T. Ungar, B. Völker, A. Hohenwarter, R. Pippan and E.P. George, Microstructure, Texture, and Strength Development during High-Pressure Torsion of Crmnfeconi High-Entropy Alloy, Curr. Comput.-Aided Drug Des., 2020 https://doi.org/10.3390/cryst10040336

    Article  Google Scholar 

  8. K. Edalati and Z. Horita, A Review on High-Pressure Torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A, 2016, 652, p 325–352.

    Article  CAS  Google Scholar 

  9. A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater. Sci., 2008, 53, p 893–979.

    Article  CAS  Google Scholar 

  10. M. Richert, Q. Liu and N. Hansen, Microstructural Evolution over a Large Strain Range in Aluminium Deformed by Cyclic-Extrusion-Compression, Mater. Sci. Eng. A, 1999, 260, p 275–283.

    Article  Google Scholar 

  11. Y. Beygelzimer, V. Varyukhin, S. Synkov and D. Orlov, Useful Properties of Twist Extrusion, Mater. Sci. Eng. A, 2009, 503, p 14–17. https://doi.org/10.1016/j.msea.2007.12.055

    Article  CAS  Google Scholar 

  12. H. Miura, G. Yu and X. Yang, Multi-Directional Forging of AZ61Mg Alloy under Decreasing Temperature Conditions and Improvement of its Mechanical Properties, Mater. Sci. Eng. A, 2011, 528, p 6981–6992. https://doi.org/10.1016/j.msea.2011.05.050

    Article  CAS  Google Scholar 

  13. M. Reihanian and M. Naseri, An Analytical Approach for Necking and Fracture of Hard Layer During Accumulative Roll Bonding (ARB) of Metallic Multilayer, Mater. Des., 2016, 89, p 1213–1222. https://doi.org/10.1016/j.matdes.2015.10.088

    Article  CAS  Google Scholar 

  14. P.M. Bhovi, D.C. Patil, S.A. Kori, K. Venkateswarlu, Y. Huang and T.G. Langdon, A Comparison of Repetitive Corrugation and Straightening and High-Pressure Torsion using an Al-Mg-Sc Alloy, J. Mater. Res. Technol., 2016, 5, p 353–359. https://doi.org/10.1016/j.jmrt.2016.03.009

    Article  CAS  Google Scholar 

  15. G. Faraji, M. Mosavi Mashadi and H.S. Kim, Tubular channel Angular Pressing (TCAP) as a Novel Severe Plastic Deformation Method for Cylindrical Tubes, Mater. Lett., 2011, 65, p 3009–3012. https://doi.org/10.1016/j.matlet.2011.06.039

    Article  CAS  Google Scholar 

  16. A. Habibi, M. Ketabchi and M. Eskandarzadeh, Nano-Grained Pure Copper with High-Strength and High-Conductivity Produced by Equal Channel Angular Rolling Process, J. Mater. Process. Technol., 2011, 211, p 1085–1090. https://doi.org/10.1016/j.jmatprotec.2011.01.009

    Article  CAS  Google Scholar 

  17. M. Şahbaz, H. Kaya and A. Kentli, A New Severe Plastic Deformation Method: Thin-Walled Open Channel Angular Pressing (TWO-CAP), Int. J. Adv. Manuf. Technol., 2020, 106, p 1487–1496. https://doi.org/10.1007/s00170-019-04748-1

    Article  Google Scholar 

  18. M. Şahbaz, A. Kentli and H. Kaya, Performance of Novel TWO-CAP (Thin-Walled Open Channel Angular Pressing) Method on AA5083, Met. Mater. Int., 2020, 27, p 2430.

    Article  Google Scholar 

  19. M.J. Qarni, G. Sivaswamy, A. Rosochowski and S. Boczkal, Effect of Incremental Equal Channel Angular Pressing (I-ECAP) on the Microstructural Characteristics and Mechanical Behaviour of Commercially Pure Titanium, Mater. Des., 2017, 122, p 385–402. https://doi.org/10.1016/j.matdes.2017.03.015

    Article  CAS  Google Scholar 

  20. C. Xu, S. Schroeder, P.B. Berbon and T.G. Langdon, Principles of ECAP-Conform as a Continuous Process for Achieving Grain Refinement: Application to an Aluminum Alloy, Acta Mater., 2010, 58, p 1379–1386. https://doi.org/10.1016/j.actamat.2009.10.044

    Article  CAS  Google Scholar 

  21. F. Fereshteh-Saniee, S. Sepahi-Boroujeni, S. Lahmi and G.H. Majzoobi, An Experimental Investigation on the Strain Rate Sensitivity of a Severely Deformed Aluminum Alloy, Exp. Mech., 2015, 55, p 569–576. https://doi.org/10.1007/s11340-014-9968-x

    Article  CAS  Google Scholar 

  22. S. Sepahi-Boroujeni and F. Fereshteh-Saniee, Expansion Equal Channel Angular Extrusion, as a Novel Severe Plastic Deformation Technique, J. Mater. Sci., 2015, 50, p 3908–3919. https://doi.org/10.1007/s10853-015-8937-9

    Article  CAS  Google Scholar 

  23. S. Sepahi-Boroujeni and F. Fereshteh-Saniee, The Influences of the Expansion Equal Channel Angular Extrusion Operation on the Strength and Ductility of AZ80 Magnesium Alloy, Mater. Sci. Eng. A, 2015, 636, p 249–253. https://doi.org/10.1016/j.msea.2015.03.073

    Article  CAS  Google Scholar 

  24. X.M. Feng and T.T. AI, Microstructure Evolution and Mechanical Behavior of AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing, Trans. Nonferrous Met. Soc. China, 2009, 19, p 293–298. https://doi.org/10.1016/S1003-6326(08)60267-8

    Article  CAS  Google Scholar 

  25. S. Öğüt, H. Kaya, A. Kentli, K. Özbeyaz, M. Şahbaz and M. Uçar, Investigation of Strain Inhomogeneity in Hexa-ECAP Processed AA7075, Arch. Metall. Mater., 2021, 66, p 431–436. https://doi.org/10.24425/amm.2021.135875

    Article  CAS  Google Scholar 

  26. H. Kaya and M. Uçar, The Effects of Mechanical Properties on Fatigue Behavior of ECAPed AA7075, High Temp. Mater. Process., 2016, 35, p 225–234. https://doi.org/10.1515/htmp-2014-0193

    Article  CAS  Google Scholar 

  27. H. Kaya, M. Uçar, A. Cengiz, R. Samur, D. Özyürek and A. Çalişkan, Novel Molding Technique for ECAP Process and Effects on Hardness of AA7075, Mechanika, 2014, 20, p 5–10. https://doi.org/10.5755/j01.mech.20.1.4207

    Article  Google Scholar 

  28. B. Xu, J. Sun, Z. Yang, L. Xiao, H. Zhou, J. Han, H. Liu, Y. Wu, Y. Yuan, X. Zhuo, D. Song, J. Jiang and A. Ma, Microstructure and Anisotropic Mechanical Behavior of the High-Strength and Ductility AZ91 Mg Alloy Processed by Hot Extrusion and Multi-Pass RD-ECAP, Mater. Sci. Eng. A, 2020, 780, 139191. https://doi.org/10.1016/j.msea.2020.139191

    Article  CAS  Google Scholar 

  29. Y. Nishida, H. Arima, J.C. Kim and T. Ando, Rotary-Die Equal-Channel Angular Pressing of an Al-7 mass% Si-0.35 mass% Mg alloy, Scr. Mater., 2001, 45, p 261–266. https://doi.org/10.1016/S1359-6462(01)00985-X

    Article  CAS  Google Scholar 

  30. M.A. Agwa, M.N. Ali and A.E. Al-Shorbagy, Optimum Processing Parameters for Equal Channel Angular Pressing, Mech. Mater., 2016, 100, p 1–11. https://doi.org/10.1016/j.mechmat.2016.06.003

    Article  Google Scholar 

  31. S. Öğüt, H. Kaya, A. Kentli and M. Uçar, Applying Hybrid Equal Channel Angular Pressing (HECAP) to Pure Copper using Optimized Exp.-ECAP die, Int. J. Adv. Manuf. Technol., 2021, 116, p 3859–3876. https://doi.org/10.1007/s00170-021-07717-9

    Article  Google Scholar 

  32. S. Frint, M. Hockauf, P. Frint and M.F.X. Wagner, Scaling up Segal’s principle of Equal-Channel Angular Pressing, Mater. Des., 2016, 97, p 502–511. https://doi.org/10.1016/j.matdes.2016.02.067

    Article  Google Scholar 

  33. N. Haghdadi, A. Zarei-Hanzaki, D. Abou-Ras, M.H. Maghsoudi, A. Ghorbani and M. Kawasaki, An Investigation into the Homogeneity of Microstructure, Strain Pattern and Hardness of Pure Aluminum Processed by Accumulative Back Extrusion, Mater. Sci. Eng. A, 2014, 595, p 179–187. https://doi.org/10.1016/j.msea.2013.11.077

    Article  CAS  Google Scholar 

  34. A. Ghorbani, A. Zarei-Hanzaki, P. Dastranjy Nezhadfar and M.H. Maghsoudi, Microstructural Evolution and Room Temperature Mechanical Properties of AZ31 Alloy Processed through Hot Constrained Compression, Int. J. Adv. Manuf. Technol., 2019, 102, p 2307–2317. https://doi.org/10.1007/s00170-019-03321-0

    Article  Google Scholar 

  35. H. Hu, X. Qin, D. Zhang and X. Ma, A Novel Severe Plastic Deformation Method for Manufacturing AZ31 Magnesium Alloy Tube, Int. J. Adv. Manuf. Technol., 2018, 98, p 897–903. https://doi.org/10.1007/s00170-018-2179-3

    Article  Google Scholar 

  36. K.R. Sriraman, S. Ganesh Sundara Raman and S.K. Seshadri, Influence of Crystallite Size on the Hardness and Fatigue Life of Steel Samples Coated with Electrodeposited Nanocrystalline Ni-W Alloys, Mater. Lett., 2007, 61, p 715–718. https://doi.org/10.1016/j.matlet.2006.05.049

    Article  CAS  Google Scholar 

  37. N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu and K. Lu, An Investigation of Surface Nanocrystallization Mechanism in Fe Induced by Surface Mechanical Attrition Treatment, Acta Mater., 2002, 50, p 4603–4616. https://doi.org/10.1016/S1359-6454(02)00310-5

    Article  CAS  Google Scholar 

  38. S. Takaki, T. Tsuchiyama, K. Nakashima, H. Hidaka, K. Kawasaki and Y. Futamura, Microstructure Development of Steel During Severe Plastic Deformation, Met. Mater. Int., 2004, 10, p 533–539. https://doi.org/10.1007/BF03027415

    Article  CAS  Google Scholar 

  39. B. Chen, C. Lu, D. Lin and X. Zeng, Microstructural Evolution and Mechanical Properties of Mg 95.5Y3Zn1.5 Alloy Processed by Extrusion and ECAP, Met. Mater. Int., 2014, 20, p 285–290. https://doi.org/10.1007/s12540-014-2025-6

    Article  CAS  Google Scholar 

  40. W. Guo, Q.D. Wang, B. Ye, M.P. Liu, T. Peng, X.T. Liu and H. Zhou, Enhanced Microstructure Homogeneity and Mechanical Properties of AZ31 Magnesium Alloy by Repetitive Upsetting, Mater. Sci. Eng. A, 2012, 540, p 115–122. https://doi.org/10.1016/j.msea.2012.01.111

    Article  CAS  Google Scholar 

  41. H. Liu, C. Sun, C. Wang, Y. Li, J. Bai, F. Xue, A. Ma and J. Jiang, Improving Toughness of a Mg2Ca-Containing Mg-Al-Ca-Mn Alloy via Refinement and Uniform Dispersion of Mg2Ca Particles, J. Mater. Sci. Technol., 2020, 59, p 61–71. https://doi.org/10.1016/j.jmst.2020.02.092

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Mehmet UÇAR for his support in the laboratory studies. This study was funded by Marmara University, Commission of Scientific Research Project (FEN-A-090217-0045). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Öğüt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öğüt, S., Kaya, H. & Kentli, A. Comparison of the Effect of Equal Channel Angular Pressing, Expansion Equal Channel Angular Pressing, and Hybrid Equal Channel Angular Pressing on Mechanical Properties of AZ31 Mg Alloy. J. of Materi Eng and Perform 31, 3341–3353 (2022). https://doi.org/10.1007/s11665-021-06430-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06430-8

Keywords

Navigation