Skip to main content
Log in

Comparing Compression Deformation and Rate Sensitivity of Additively Manufactured and Extruded-Annealed 316L Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The deformation behavior of a selective-laser-melt-processed 316-L alloy (SLM-316L) under compression was determined together with a commercial annealed-extruded 316L alloy bar (C-316L) for comparison. Strain rate jump tests and hardness tests on the untested and compression tested samples were also performed. Extensive microscopic observations on the deformed and undeformed samples showed a twinning-dominated deformation in SLM-316L, similar to twinning-induced-plasticity steels, while a martensitic transformation-dominated deformation in C-316L alloy, similar to transformation-induced-plasticity steels. Within the studied quasi-static strain rate regime, the measured higher strain rate sensitivity of SLM-316L was ascribed to the lower distances between the nano-twins, in the level of 100 nm, than the distances between martensite plates, in the level of 1000 nm. A higher hardness increase in the martensite transformation region as compared with the twinned region proved the higher work hardening of C-316L. The hardness tests in the micron and sub-micron levels further confirmed the previously determined relatively low resistances of the dislocation cell walls (sub-grain) to the dislocation motion in SLM-316L alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Gibson, D. Rosen and B. Stucker, Additive Manufacturing Technologies, Springer, Berlin, 2014.

    Google Scholar 

  2. B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu and Y. Shi, Differences in Microstructure and Properties Between Selective Laser Melting and Traditional Manufacturing for Fabrication of Metal Parts: A Review, Front. Mech. Eng., 2015, 10(2), p 111–125.

    Article  Google Scholar 

  3. P. Mercelis and J.P. Kruth, Residual Stresses in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyp. J., 2006, 12(5), p 254–265. (in English)

    Article  Google Scholar 

  4. Z.C. Fang, Z.L. Wu, C.G. Huang and C.W. Wu, Review on Residual Stress in Selective Laser Melting Additive Manufacturing of Alloy Parts, Opt. Laser Technol., 2020, 129(15), p 106283. (in English)

    Article  CAS  Google Scholar 

  5. T. Kim, K. Ha, Y.R. Cho, J.B. Jeon and W. Lee, Analysis of Residual Stress Evolution During Powder Bed Fusionprocess of AISI 316L Stainless Steel with Experiment and Numerical Modeling, Int. J. Adv. Manuf. Technol., 2019, 105(1–4), p 309–323. (in English)

    Article  Google Scholar 

  6. H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin and E. Toyserkani, A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties, Mater. Des., 2018, 144, p 98–128. (in English)

    Article  CAS  Google Scholar 

  7. P. Bajaj, A. Hariharan, A. Kini, P. Kurnsteiner, D. Raabe and E.A. Jagle, Steels in Additive Manufacturing: A Review of Their Microstructure and Properties, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2020, 772(25), p 138633. (in English)

    Article  CAS  Google Scholar 

  8. J.J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 2016, 46, p 151–186.

    Article  CAS  Google Scholar 

  9. K. Saeidi, X. Gao, Y. Zhong and Z.J. Shen, Hardened Austenite Steel with Columnar Sub-Grain Structure Formed by Laser Melting, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2015, 625, p 221–229. (in English)

    Article  CAS  Google Scholar 

  10. Y. Zhong, L.F. Liu, S. Wikman, D.Q. Cui and Z.J. Shen, Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser melting, J. Nucl. Mater., 2016, 470, p 170–178. (in English)

    Article  CAS  Google Scholar 

  11. M. Zietala, T. Durejko, M. Polanski, I. Kunce, T. Plocinski, W. Zielinski, M. Lazinska, W. Stepniowski, T. Czujko, K.J. Kurzydlowski and Z. Bojar, The Microstructure, Mechanical Properties and Corrosion Resistance of 316 L Stainless Steel Fabricated Using Laser Engineered Net Shaping, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2016, 677, p 1–10. (in English)

    Article  CAS  Google Scholar 

  12. S. Gorsse, C. Hutchinson, M. Goune and R. Banerjee, Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys, Sci. Technol. Adv. Mater., 2017, 18(1), p 584–610. (in English)

    Article  CAS  Google Scholar 

  13. M.-S. Pham and P. Hooper, Roles of Microstructures on Deformation Response of 316 Stainless Steel Made by 3D Printing, AIP Conf. Proc., 2017, 1896(1), p 040017.

    Article  Google Scholar 

  14. M.S. Pham, B. Dovgyy and P.A. Hooper, Twinning Induced Plasticity in Austenitic Stainless Steel 316L made by Additive Manufacturing, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2017, 704, p 102–111. (in English)

    Article  CAS  Google Scholar 

  15. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza and T. Zhu, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2017, 17, p 63–71.

    Article  Google Scholar 

  16. Y.J. Yin, J.Q. Sun, J. Guo, X.F. Kan and D.C. Yang, Mechanism of High Yield Strength and Yield Ratio of 316 L Stainless Steel by Additive Manufacturing, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2019, 744, p 773–777. (in English)

    Article  CAS  Google Scholar 

  17. X.L. Wang, J.A. Muniz-Lerma, M.A. Shandiz, O. Sanchez-Mata and M. Brochu, Crystallographic-Orientation-Dependent Tensile Behaviours of Stainless Steel 316L Fabricated by Laser Powder Bed Fusion, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2019, 766(16), p 138395. (in English)

    Article  CAS  Google Scholar 

  18. M.M. Ma, Z.M. Wang and X.Y. Zeng, A Comparison on Metallurgical Behaviors of 316L Stainless Steel by Selective Laser Melting and Laser Cladding Deposition, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2017, 685, p 265–273. (in English)

    Article  CAS  Google Scholar 

  19. W. Woo, J.S. Jeong, D.K. Kim, C.M. Lee, S.H. Choi, J.Y. Suh, S.Y. Lee, S. Harjo and T. Kawasaki, Stacking Fault Energy Analyses of Additively Manufactured Stainless Steel 316L and CrCoNi Medium Entropy Alloy Using In Situ Neutron Diffraction, Sci Rep, 2020, 10(1), p 1350. (in English)

    Article  CAS  Google Scholar 

  20. L.F. Liu, Q.Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J.X. Li, Z. Zhang, Q. Yu and Z.J. Shen, Dislocation Network in Additive Manufactured Steel Breaks Strength-Ductility Trade-Off, Mater. Today, 2018, 21(4), p 354–361. (in English)

    Article  CAS  Google Scholar 

  21. A. Rottger, K. Geenen, M. Windmann, F. Binner and W. Theisen, Comparison of Microstructure and Mechanical Properties of 316 L Austenitic Steel Processed by Selective Laser Melting with Hot-Isostatic Pressed and Cast Material, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2016, 678, p 365–376. (in English)

    Article  Google Scholar 

  22. Z. Li, T. Voisin, J.T. McKeown, J.C. Ye, T. Braun, C. Kamath, W.E. King and Y.M. Wang, Tensile Properties, Strain Rate Sensitivity, and Activation Volume of Additively Manufactured 316L Stainless Steels, Int. J. Plast., 2019, 120, p 395–410. (in English)

    Article  CAS  Google Scholar 

  23. T.J. Kneen, C. Barrett, G.P. Manogharan, P.R. Carlson, J. Dimon and B.P. Conner, Mechanical Behaviour and High Strain Rate Deformation of Stainless Steel 316L Processed by Selective Laser Melting, Int. J. Rapid Manuf., 2020, 9(9), p 84–102.

    Article  Google Scholar 

  24. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583.

    Article  CAS  Google Scholar 

  25. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3–20.

    Article  CAS  Google Scholar 

  26. D.L. Bish and S.A. Howard, Quantitative Phase Analysis Using the Rietveld Method, J. Appl. Crystallogr., 1988, 21(2), p 86–91.

    Article  CAS  Google Scholar 

  27. Z. Sun, X. Tan, S.B. Tor and C.K. Chua, Simultaneously Enhanced Strength and Ductility for 3D-Printed Stainless Steel 316L by Selective Laser Melting, NPG Asia Mater., 2018, 10(4), p 127–136.

    Article  CAS  Google Scholar 

  28. S.-H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa and T. Nakano, Excellent Mechanical and Corrosion Properties of Austenitic Stainless Steel with a Unique Crystallographic Lamellar Microstructure Via Selective Laser Melting, Scr. Mater., 2019, 159, p 89–93.

    Article  CAS  Google Scholar 

  29. T. Niendorf, S. Leuders, A. Riemer, F. Brenne, T. Tröster, H.A. Richard and D. Schwarze, Functionally Graded Alloys Obtained by Additive Manufacturing, Adv. Eng. Mater., 2014, 16(7), p 857–861.

    Article  CAS  Google Scholar 

  30. O. Andreau, I. Koutiri, P. Peyre, J.-D. Penot, N. Saintier, E. Pessard, T. De Terris, C. Dupuy and T. Baudin, Texture Control of 316L Parts by Modulation of the Melt Pool Morphology in Selective Laser Melting, J. Mater. Process. Technol., 2019, 264, p 21–31.

    Article  CAS  Google Scholar 

  31. T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster and D. Schwarze, Highly Anisotropic Steel Processed by Selective Laser Melting, Metall. Mater. Trans. B, 2013, 44(4), p 794–796.

    Article  CAS  Google Scholar 

  32. J.J. Marattukalam, D. Karlsson, V. Pacheco, P. Beran, U. Wiklund, U. Jansson, B. Hjorvarsson and M. Sahlberg, The Effect of Laser Scanning Strategies on Texture, Mechanical Properties, and Site-Specific Grain Orientation in Selective Laser Melted 316L SS, Mater. Des., 2020, 193(11), p 108852. (in English)

    Article  CAS  Google Scholar 

  33. S. Morito, J. Nishikawa and T. Maki, Dislocation Density Within Lath Martensite in Fe-C and Fe-Ni Alloys, ISIJ Int., 2003, 43(9), p 1475–1477.

    Article  CAS  Google Scholar 

  34. G.I. Taylor, The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical, Proc. R. Soc. Lond. Ser. A Pap. Math. Phys. Charact., 1934, 145(855), p 362–387.

    CAS  Google Scholar 

  35. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo and M.X. Huang, High Dislocation Density-Induced Large Ductility in Deformed and Partitioned Steels, Science, 2017, 357(6355), p 1029–1032.

    Article  CAS  Google Scholar 

  36. T.S. Byun, On the Stress Dependence of Partial Dislocation Separation and Deformation Microstructure in Austenitic Stainless Steels, Acta Mater., 2003, 51(11), p 3063–3071.

    Article  CAS  Google Scholar 

  37. H. Conrad and H. Wiedersich, Activation Energy for Deformation of Metals at Low Temperatures, Acta Metall., 1960, 8(2), p 128–130.

    Article  Google Scholar 

  38. J.W. Christian and S. Mahajan, Deformation Twinning, Prog. Mater. Sci., 1995, 39(1–2), p 1–157.

    Article  Google Scholar 

  39. R.A. Hadfield, Some Newly Discovered Properties of Iron and Manganese, Min. Proc. Inst. Civ. Eng., 1888, 93(1888), p 61–75.

    Google Scholar 

  40. Y.Z. Li and M.X. Huang, Carbon-Dislocation Interaction-Induced Abnormal Strain-Rate Sensitivity in Twinning-Induced Plasticity Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2019, 50A(6), p 2570–2575. (in English)

    Article  Google Scholar 

  41. L. Rémy and A. Pineau, Twinning and Strain-Induced f.c.c. → h.c.p. Transformation on the Mechanical Properties of Co-Ni-Cr-Mo Alloys, Mater. Sci. Eng., 1976, 26(1), p 123–132.

    Article  Google Scholar 

  42. S. Mahajan and D.F. Williams, Deformation Twinning in Metals and Alloys, Int. Metall. Rev., 1973, 18(2), p 43–61.

    Article  CAS  Google Scholar 

  43. M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  44. M.A. Meyers, O. Vöhringer and V.A. Lubarda, The Onset of Twinning in Metals: A Constitutive Description, Acta Mater., 2001, 49(19), p 4025–4039.

    Article  CAS  Google Scholar 

  45. S. Lee, J. Kim, S.-J. Lee and B.C. De Cooman, Effect of Nitrogen on the Critical Strain for Dynamic Strain Aging in High-Manganese Twinning-Induced Plasticity Steel, Scr. Mater., 2011, 65(6), p 528–531.

    Article  CAS  Google Scholar 

  46. C. Pauzon, E. Hryha, P. Foret and L. Nyborg, Effect of Argon and Nitrogen Atmospheres on the Properties of Stainless Steel 316 L Parts Produced by Laser-Powder Bed Fusion, Mater. Des., 2019, 179(10), p 107873. (in English)

    Article  CAS  Google Scholar 

  47. A.J. Birnbaum, H. Ryou, J.C. Steuben, A.P. Iliopoulos, K.J. Wahl and J.G. Michopoulos, Nested Size Effects in the Nanoindentation Response of Additively Manufactured 316L Stainless Steel, Mater. Lett., 2020, 280, p 128570.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by the Scientific and Technological Research Council of Turkey within the support program 1515 for research and laboratory developments within Project Number 5189901. Moreover, the authors are grateful to the Materials Division of TUBITAK Marmara Research Center for providing the needed infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Yavas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enser, S., Yavas, H., Hamat, B.A. et al. Comparing Compression Deformation and Rate Sensitivity of Additively Manufactured and Extruded-Annealed 316L Alloys. J. of Materi Eng and Perform 30, 8831–8840 (2021). https://doi.org/10.1007/s11665-021-06340-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06340-9

Keywords

Navigation