Skip to main content

Advertisement

Log in

Micro/Nanoscale Surface Modification of Ti6Al4V Alloy for Implant Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, micro- and nanosurface structures were fabricated by sandblasting (S), acid-etching (E), anodic oxidation (A), sandblasting/acid-etching (SE), sandblasting/anodization (SA) and sandblasting/acid-etching/anodization (SEA) processes on Ti6Al4V alloy in order to investigate apatite formation ability. The phase, morphology, topography, roughness and wettability properties of surfaces were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), surface profilometer and contact angle techniques. In vitro tests were performed in simulated body fluid (SBF) for 21 days. The results showed that the surface topography, roughness and wettability changed the Ca and P ion ratio. The SEA sample had high surface topography and the lowest contact angle value. The value of Ca/P ratio was 1.81 for SEA sample. The SEA sample showed the highest Ca/P ratio value which was close to theoretical value. Ca and P ion ratio value because of bioactive phases on the surfaces, high surface roughness and lower contact angle values as compared to other samples. The proposed methodology improves the apatite formation ability of Ti6Al4V alloys. Sandblasted/acid-etched/anodized surfaces can be an alternative to conventional sandblasted/acid-etched implant surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Niinomi, Mechanical Properties of Biomedical Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1), p 231–236.

    Article  Google Scholar 

  2. L.-C. Zhang, L.-Y. Chen and L. Wang, Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests, Adv. Eng. Mater., 2020, 22(5), p 1901258.

    Article  CAS  Google Scholar 

  3. K. Lee, Y.-H. Jeong, W.A. Brantley and H.-C. Choe, Surface Characteristics of Hydroxyapatite Films Deposited on Anodized Titanium by an Electrochemical Method, Thin Solid Films, 2013, 546, p 185–188.

    Article  CAS  Google Scholar 

  4. H.-C. Hsu, S.-C. Wu, S.-K. Hsu, Y.-H. Liao and W.-F. Ho, Bioactivity of Hybrid Micro/Nano-Textured Ti-5Si Surface by Acid Etching and Heat Treatment, Mater. Des., 2016, 104, p 205–210.

    Article  CAS  Google Scholar 

  5. G.A. Crawford, N. Chawla, K. Das, S. Bose and A. Bandyopadhyay, Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate, Acta Biomater., 2007, 3(3), p 359–367.

    Article  CAS  Google Scholar 

  6. L. Damiati, M.G. Eales, A.H. Nobbs, B. Su, P.M. Tsimbouri, M. Salmeron-Sanchez and M.J. Dalby, Impact of Surface Topography and Coating on Osteogenesis and Bacterial Attachment on Titanium Implants, J. Tissue Eng., 2018, 9, p 2041731418790694–2041731418790694.

    Article  Google Scholar 

  7. N.-B. Li, S.-J. Sun, H.-Y. Bai, W.-H. Xu, G.-Y. Xiao, X. Chen, J.-H. Zhao, Y.-L. Zhang and Y.-P. Lu, Micro/Nanoscale Multistructures of Oxide Layers on Ti6Al4V Achieved by Acid Etching and Induction Heating for High Osteogenic Activity in vitro, Surf. Coat. Technol., 2020, 393, p 125816.

    Article  CAS  Google Scholar 

  8. S. Ferraris, A. Bobbio, M. Miola and S. Spriano, Micro- and Nano-textured, Hydrophilic and Bioactive Titanium Dental Implants, Surf. Coat. Technol., 2015, 276, p 374–383.

    Article  CAS  Google Scholar 

  9. S. Ferraris, S. Spriano, G. Pan, A. Venturello, C.L. Bianchi, R. Chiesa, M.G. Faga, G. Maina and E. Vernè, Surface Modification of Ti–6Al–4V alloy for Biomineralization and Specific Biological Response: Part I, Inorganic Modification, J. Mater. Sci. - Mater. Med., 2011, 22(3), p 533–545.

    Article  CAS  Google Scholar 

  10. Y. Wang, W. Zhao, Y. Wu, G. Liu and X. Wu, Micro/Nano-structures Transition and Electrochemical Response of Ti-6Al-4V Alloy in Simulated Seawater, Surf. Topogr. Metrol. Prop., 2018, 6(3), p 034009.

    Article  CAS  Google Scholar 

  11. X. Liu, P.K. Chu and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R. Rep., 2004, 47(3), p 49–121.

    Article  Google Scholar 

  12. H. Cimenoglu, M. Gunyuz, G.T. Kose, M. Baydogan, F. Uğurlu and C. Sener, Micro-arc Oxidation of Ti6Al4V and Ti6Al7Nb Alloys for Biomedical Applications, Mater. Charact., 2011, 62(3), p 304–311.

    Article  CAS  Google Scholar 

  13. P. Li, J. Qian, W. Zhang, C. Schille, E. Schweizer, A. Heiss, U.E. Klotz, L. Scheideler, G. Wan and J. Geis-Gerstorfer, Improved Biodegradability of Zinc and Its Alloys by Sandblasting Treatment, Surf. Coat. Technol., 2021, 405, p 126678.

    Article  CAS  Google Scholar 

  14. Y. Doe, H. Ida, M. Seiryu, T. Deguchi, N. Takeshita, S. Sasaki, S. Sasaki, D. Irie, K. Tsuru, K. Ishikawa and T. Takano-Yamamoto, Titanium Surface Treatment by Calcium Modification with Acid-Etching Promotes Osteogenic Activity and Stability of Dental Implants, Materialia, 2020, 12, p 100801.

    Article  CAS  Google Scholar 

  15. S. Rastegari and E. Salahinejad, Surface Modification of Ti-6Al-4V Alloy for Osseointegration by Alkaline Treatment and Chitosan-Matrix Glass-Reinforced Nanocomposite Coating, Carbohyd. Polym., 2019, 205, p 302–311.

    Article  CAS  Google Scholar 

  16. T. Li, L. Li, J. Qi and F. Chen, Corrosion Protection of Ti6Al4V by a Composite Coating with a Plasma Electrolytic Oxidation Layer and Sol-Gel Layer Filled with Graphene Oxide, Prog. Org. Coat., 2020, 144, p 105632.

    Article  Google Scholar 

  17. S.-Y. Park and H.-C. Choe, Functional Element Coatings on Ti-Alloys for Biomaterials by Plasma Electrolytic Oxidation, Thin Solid Films, 2020, 699, p 137896.

    Article  CAS  Google Scholar 

  18. J.P.A. Carobolante, K.B. da Silva, J.A.M. Chaves, M.F. Dias Netipanyj, K.C. Popat and A.P.R. AlvesClaro, Nanoporous Layer Formation on the Ti10Mo8Nb Alloy Surface Using Anodic Oxidation, Surface Coat. Technol., 2020, 386, p 125467.

    Article  CAS  Google Scholar 

  19. J. Hu, H. Li, X. Wang, L. Yang, M. Chen, R. Wang, G. Qin, D.-F. Chen and E. Zhang, Effect of Ultrasonic Micro-arc Oxidation on the Antibacterial Properties and Cell Biocompatibility of Ti–Cu Alloy for Biomedical Application, Mater. Sci. Eng. C, 2020, 115, p 110921.

    Article  CAS  Google Scholar 

  20. D.-P. Zhao, J.-C. Tang, H.-M. Nie, Y. Zhang, Y.-K. Chen, X. Zhang, H.-X. Li and M. Yan, Macro-micron-nano-featured Surface Topography of Ti-6Al-4V Alloy for Biomedical Applications, Rare Met., 2018, 37(12), p 1055–1063.

    Article  CAS  Google Scholar 

  21. B. Ren, Y. Wan, C. Liu, H. Wang, M. Yu, X. Zhang and Y. Huang, Improved Osseointegration of 3D Printed Ti-6Al-4V Implant with a Hierarchical Micro/Nano Surface Topography: An in vitro and in vivo Study, Mater. Sci. Eng. C, 2021, 118, p 111505.

    Article  CAS  Google Scholar 

  22. T. Dikici, S. Demirci and M. Erol, Enhanced Photocatalytic Activity of Micro/Nano Textured TiO2 Surfaces Prepared by Sandblasting/Acid-Etching/Anodizing Process, J. Alloys Compd., 2017, 694, p 246–252.

    Article  CAS  Google Scholar 

  23. I.P. Torres-Avila, I.I. Padilla-Martínez, N. Pérez-Hernández, A.E. Bañuelos-Hernández, J.C. Velázquez, J.L. Castrejón-Flores and E. Hernández-Sánchez, Surface Modification of the Ti-6Al-4V Alloy by Anodic Oxidation and Its Effect on Osteoarticular Cell Proliferation, Coatings, 2020, 10(5), p 491.

    Article  CAS  Google Scholar 

  24. J. Zhang, J. Liu, C. Wang, F. Chen, X. Wang and K. Lin, A Comparative Study of the Osteogenic Performance Between the Hierarchical Micro/Submicro-Textured 3D-Printed Ti6Al4V Surface and the SLA Surface, Bioact. Mater., 2020, 5(1), p 9–16.

    Article  Google Scholar 

  25. F. Reshadi, S. Khorasani and G. Faraji, Surface Characterization of Nanostructured Commercially Pure Titanium Modified by Sandblasting and Acid-Etching for Implant Applications, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol., 2020, 234(3), p 414–423.

    Article  CAS  Google Scholar 

  26. D.P. Oliveira, A. Palmieri, F. Carinci and C. Bolfarini, Gene Expression of Human Osteoblasts Cells on Chemically Treated Surfaces of Ti–6Al–4V–ELI, Mater. Sci. Eng. C, 2015, 51, p 248–255.

    Article  CAS  Google Scholar 

  27. B. Ren, Y. Wan, G. Wang, Z. Liu, Y. Huang and H. Wang, Morphologically Modified Surface with Hierarchical Micro-/Nano-Structures for Enhanced Bioactivity of Titanium Implants, J. Mater. Sci., 2018, 53(18), p 12679–12691.

    Article  CAS  Google Scholar 

  28. M.-H. Kim, K. Park, K.-H. Choi, S.-H. Kim, S.E. Kim, C.-M. Jeong and J.-B. Huh, Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants, Int J Mol Sci, 2015, 16(5), p 10324–10336.

    Article  CAS  Google Scholar 

  29. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915.

    Article  CAS  Google Scholar 

  30. N. Singh, R. Ummethala, P.S. Karamched, R. Sokkalingam, V. Gopal, G. Manivasagam and K.G. Prashanth, Spark Plasma Sintering of Ti6Al4V Metal Matrix Composites: Microstructure, Mechanical and Corrosion Properties, J. Alloys Compd., 2021, 865, p 158875.

    Article  CAS  Google Scholar 

  31. M. Hasegawa, J. Saruta, M. Hirota, T. Taniyama, Y. Sugita, K. Kubo, M. Ishijima, T. Ikeda, H. Maeda and T. Ogawa, A Newly Created Meso-, Micro-, and Nano-Scale Rough Titanium Surface Promotes Bone-Implant Integration, Int J Mol Sci, 2020, 21(3), p 783.

    Article  CAS  Google Scholar 

  32. R.A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K.H. Sandhage and B.D. Boyan, The Effects of Combined Micron-/Submicron-Scale Surface Roughness and Nanoscale Features on Cell Proliferation and Differentiation, Biomaterials, 2011, 32(13), p 3395–3403.

    Article  CAS  Google Scholar 

  33. X. Chen, R.-F. Zhu, H. Gao, W.-L. Xu, G.-Y. Xiao, C.-Z. Chen and Y.-P. Lu, A High Bioactive Alkali-Treated Titanium Surface Induced by Induction Heat Treatment, Surf. Coat. Technol., 2020, 385, p 125362.

    Article  CAS  Google Scholar 

  34. C. Finger, M. Stiesch, M. Eisenburger, B. Breidenstein, S. Busemann and A. Greuling, Effect of Sandblasting on the Surface Roughness and Residual Stress of 3Y-TZP (zirconia), SN Appl. Sci., 2020, 2(10), p 1700.

    Article  CAS  Google Scholar 

  35. S.-G. Lim and H.-C. Choe, Bioactive Apatite Formation on PEO-Treated Ti-6Al-4V Alloy After 3rd Anodic Titanium Oxidation, Appl. Surf. Sci., 2019, 484, p 365–373.

    Article  CAS  Google Scholar 

  36. J.I. Rosales-Leal, M.A. Rodríguez-Valverde, G. Mazzaglia, P.J. Ramón-Torregrosa, L. Díaz-Rodríguez, O. García-Martínez, M. Vallecillo-Capilla, C. Ruiz and M.A. Cabrerizo-Vílchez, Effect of Roughness, Wettability and Morphology of Engineered Titanium Surfaces on Osteoblast-Like Cell Adhesion, Colloids Surf., A, 2010, 365(1), p 222–229.

    Article  CAS  Google Scholar 

  37. C.M. Cotrut, I.C. Ionescu, E. Ungureanu, A. Berbecaru, R.I. Zamfir, A. Vladescu and D.M. Vranceanu, Evaluation of Surface Modification Techniques on the Ability of Apatite Formation and Corrosion Behavior in Synthetic Body Fluid: An in vitro Study, Surf. Interfaces, 2021, 22, p 100866.

    Article  CAS  Google Scholar 

  38. M.K. Arumugam, M.A. Hussein, A. Yusuf Adesina and N. Al-Aqeeli, In Vitro Corrosion and Bioactivity Performance of Surface-Treated Ti–20Nb–13Zr Alloys for Orthopedic Applications, Coatings, 2019, 9(5), p 344.

    Article  CAS  Google Scholar 

  39. H. Wang, J. Liu, C. Wang, S.G. Shen, X. Wang and K. Lin, The Synergistic Effect of 3D-Printed Microscale Roughness Surface and Nanoscale Feature on Enhancing Osteogenic Differentiation and Rapid Osseointegration, J. Mater. Sci. Technol., 2021, 63, p 18–26.

    Article  Google Scholar 

  40. A. Kar, K.S. Raja and M. Misra, Electrodeposition of Hydroxyapatite onto Nanotubular TiO2 for Implant Applications, Surf. Coat. Technol., 2006, 201(6), p 3723–3731.

    Article  CAS  Google Scholar 

  41. C.N. Elias, Y. Oshida, J.H.C. Lima and C.A. Muller, Relationship Between Surface Properties (Roughness, Wettability and Morphology) of Titanium and Dental Implant Removal Torque, J. Mech. Behav. Biomed. Mater., 2008, 1(3), p 234–242.

    Article  Google Scholar 

  42. F. Rupp, L. Scheideler, D. Rehbein, D. Axmann and J. Geis-Gerstorfer, Roughness Induced Dynamic Changes of Wettability of Acid Etched Titanium Implant Modifications, Biomaterials, 2004, 25(7), p 1429–1438.

    Article  CAS  Google Scholar 

  43. J.C.M. Souza, M.B. Sordi, M. Kanazawa, S. Ravindran, B. Henriques, F.S. Silva, C. Aparicio and L.F. Cooper, Nano-scale Modification of Titanium Implant Surfaces to Enhance Osseointegration, Acta Biomater., 2019, 94, p 112–131.

    Article  CAS  Google Scholar 

  44. J. Alipal, N.A.S. Mohd Pu’ad, N.H.M. Nayan, N. Sahari, H.Z. Abdullah, M.I. Idris and T.C. Lee, An Updated Review on Surface Functionalisation of Titanium and Its Alloys for Implants Applications, Mater. Today Proc., 2021, 42, p 270–282.

    Article  CAS  Google Scholar 

  45. X.F. Xiao, R.F. Liu and Y.Z. Zheng, Characterization of Hydroxyapatite/Titania Composite Coatings Codeposited by a Hydrothermal–Electrochemical Method on Titanium, Surf. Coat. Technol., 2006, 200(14), p 4406–4413.

    Article  CAS  Google Scholar 

  46. X. Zheng, M. Huang and C. Ding, Bond Strength of Plasma-Sprayed Hydroxyapatite/Ti Composite Coatings, Biomaterials, 2000, 21(8), p 841–849.

    Article  CAS  Google Scholar 

  47. E.B. Ansar, K. Ravikumar, S. Suresh Babu, F.B. Fernandez, M. Komath, B. Basu and P.R. Harikrishna Varma, Inducing Apatite Pre-layer on Titanium Surface Through Hydrothermal Processing for Osseointegration, Mater. Sci. Eng. C, 2019, 105, p 110019.

    Article  CAS  Google Scholar 

  48. R. Kumari and J.D. Majumdar, Studies on Corrosion Resistance and Bio-activity of Plasma Spray Deposited Hydroxylapatite (HA) Based TiO2 and ZrO2 Dispersed Composite Coatings on Titanium Alloy (Ti-6Al-4V) and the Same after Post Spray Heat Treatment, Appl. Surf. Sci., 2017, 420, p 935–943.

    Article  CAS  Google Scholar 

  49. F. Haftlang, A. Zarei-Hanzaki and H.R. Abedi, The Effect of Nano-size Second Precipitates on the Structure, Apatite-Inducing Ability and in-vitro Biocompatibility of Ti-29Nb-14Ta-4.5Zr alloy, Mater. Sci. Eng. C, 2020, 109, p 110561.

    Article  CAS  Google Scholar 

  50. H.M. Han, G.J. Phillips, S.V. Mikhalovsky, S. FitzGerald and A.W. Lloyd, Sonoelectrochemical Deposition of Calcium Phosphates on Carbon Materials: Effect of Current Density, J. Mater. Sci. - Mater. Med., 2008, 19(4), p 1787–1791.

    Article  CAS  Google Scholar 

  51. I.-J. Hwang, H.-C. Choe and W.A. Brantley, Electrochemical Characteristics of Ti-6Al-4V after Plasma Electrolytic Oxidation in Solutions Containing Ca, P, and Zn ions, Surf. Coat. Technol., 2017, 320, p 458–466.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Marmara University and Dokuz Eylül University for infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Demirci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirci, S., Dikici, T. & Güllüoğlu, A.N. Micro/Nanoscale Surface Modification of Ti6Al4V Alloy for Implant Applications. J. of Materi Eng and Perform 31, 1503–1511 (2022). https://doi.org/10.1007/s11665-021-06232-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06232-y

Keywords

Navigation