Skip to main content
Log in

Effect of Processing Routes on the Microstructure and Thermoelectric Properties of Half-Heusler TiFe0.5Ni0.5Sb1−xSnx (x = 0, 0.05, 0.1, 0.2) Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Sn-doped TiFe0.5Ni0.5Sb1−xSnx (x = 0, 0.05, 0.1, 0.2) were synthesized by vacuum arc melting (VAM). In addition to the half-Heusler phase, secondary phases of Fe–Sb-rich compound and Ti-rich compounds were obtained after VAM. The alloys were then subjected to ball milling for 1 h and 5 h. Ball milling for 1h led to microcrystalline grains, while that for 5 h led to nanocrystalline grains. Ball milling followed by spark plasma sintering (SPS) at 1173 K led to significant reduction in size of secondary phases in the microstructure. The undoped sample exhibited a ZT of 0.008 at 873 K for both 1h and 5h BM-SPS samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.G. Chen, G. Han, L. Yang, L. Cheng and J. Zou, Nanostructured thermoelectric materials: Current research and future challenge, Prog. Nat. Sci. Mater. Int., 2012, 22, p 535–549.

    Article  Google Scholar 

  2. R. Fitriani, B.D. Ovik, M.C. Long, M. Barma, M.F.M. Riaz, S.M. Sabri and R. Said, Saidur, A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery, Renew. Sustain. Energy Rev., 2016, 64, p 635–659.

    Article  CAS  Google Scholar 

  3. D.S. Patil, R.R. Arakerimath and P.V. Walke, Thermoelectric materials and heat exchangers for power generation - A review, Renew. Sustain. Energy Rev., 2018, 95, p 1–22.

    Article  Google Scholar 

  4. D.M. Rowe, CRC handbook of thermoelectrics. CRC press, 2018.

  5. C. Han, Q. Sun, Z. Li and S.X. Dou, Thermoelectric Enhancement of Different Kinds of Metal Ch alcogenides, Adv. Energy Mater., 2016, 6, p 1600498.

    Article  Google Scholar 

  6. M. Rull-Bravo, A. Moure, J.F. Fernández and M. Martín-González, Skutterudites as thermoelectric materials: revisited, RSC Adv., 2015, 5, p 41653–41667.

    Article  CAS  Google Scholar 

  7. E.S. Toberer, A.F. May and G.J. Snyder, Zintl Chemistry for Designing High Efficiency Thermoelectric Materials, Chem. Mater., 2010, 22, p 624–634.

    Article  CAS  Google Scholar 

  8. G. Rogl, A. Grytsiv, M. Gürth, A. Tavassoli, C. Ebner, A. Wünschek, S. Puchegger, V. Soprunyuk, W. Schranz, E. Bauer, H. Müller, M. Zehetbauer and P. Rogl, Mechanical properties of half-Heusler alloys, Acta Mater., 2016, 107, p 178–195.

    Article  CAS  Google Scholar 

  9. S. Chen and Z. Ren, Recent progress of half-Heusler for moderate temperature thermoelectric applications, Mater. Today., 2013, 16, p 387–395.

    Article  CAS  Google Scholar 

  10. W. Jeitschko, Transition metal stannides with MgAgAs and MnCu2Al type structure, Met. Trans., 1970, 1, p 3159–3162.

    CAS  Google Scholar 

  11. T. Graf, C. Felser and S.S.P. Parkin, Simple rules for the understanding of Heusler compounds, Prog. Solid State Chem., 2011, 39, p 1–50.

    Article  CAS  Google Scholar 

  12. Y. Xia, V. Ponnambalam, S. Bhattacharya, A. Pope, S.J. Poon and T.M. Tritt, Electrical transport properties of TiCoSb half-Heusler phases that exhibit high resistivity, J. Phys. Condens. Matter., 2001, 13, p 77–89.

    Article  CAS  Google Scholar 

  13. T. Sekimoto, K. Kurosaki, H. Muta and S. Yamanaka, Thermoelectric properties of Sn-doped TiCoSb half-Heusler compounds, J. Alloys Compd., 2006, 407, p 326–329.

    Article  CAS  Google Scholar 

  14. A. Karati, S. Mukherjee, R.C. Mallik, R, Shabadi, B.S. Murty, U.V. Varadaraju, Simultaneous increase in thermopower and electrical conductivity through Ta-doping and nanostructuring in half-heulser TiNiSn alloys, Materialia 7 (2019) 100410.

  15. X.Y. Huang, Z. Xu and L.D. Chen, The thermoelectric performance of ZrNiSn/ZrO2 composites, Solid State Commun., 2004, 130, p 181–185.

    Article  CAS  Google Scholar 

  16. W.J. Xie, J. He, S. Zhu, X.L. Su, S.Y. Wang, T. Holgate, J.W. Graff, V. Ponnambalam, S.J. Poon, X.F. Tang, Q.J. Zhang and T.M. Tritt, Simultaneously optimizing the independent thermoelectric properties in (Ti, Zr, Hf)(Co, Ni)Sb alloy by in situ forming InSb nanoinclusions, Acta Mater., 2010, 58, p 4705–4713.

    Article  CAS  Google Scholar 

  17. S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu and A. Weidenkaff, High figure of merit in (Ti, Zr, Hf)NiSn half-Heusler alloys, Scr. Mater., 2012, 66, p 1073–1076.

    Article  CAS  Google Scholar 

  18. I.H. Kim, Y.G. Lee, M.K. Choi and S.C. Ur, Thermoelectric Properties of Half-Heusler TiCoSb1-xSnx Synthesized by Mechanical Alloying Process, Adv. Mater. Res., 2013, 660, p 61–65.

    Article  Google Scholar 

  19. X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Wang, D. Wang, G. Chen, Z. Ren, Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2, Energy Environ. Sci. 5 (2012) 7543.

  20. S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, T.M. Tritt, (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700 °C) p-type thermoelectric materials, Appl. Phys. Lett. 93 (2008) 022105.

  21. B. Balke, J. Barth, M. Schwall, G.H. Fecher and C. Felser, An alternative approach to improve the thermoelectric properties of half-Heusler compounds, J. Electron. Mater., 2011, 40, p 702–706.

    Article  CAS  Google Scholar 

  22. J. Toboła, L. Jodin, P. Pecheur, H. Scherrer, G. Venturini, B. Malaman, S. Kaprzyk, Composition-induced metal-semiconductor-metal crossover in half-Heusler Fe1- xNixTiSb, Phys. Rev. B - Condens. Matter Mater. Phys. 64 (2001) 1551031-1551037.

  23. K. Kutorasinski, J. Tobola and S. Kaprzyk, Application of Boltzmann transport theory to disordered thermoelectric materials: Ti(Fe Co, Ni)Sb half-Heusler alloys, Phys. Status Solidi Appl. Mater. Sci., 2014, 211, p 1229–1234.

    Article  CAS  Google Scholar 

  24. J. Toboła, J. Pierre, S. Kaprzyk, R.V. Skolozdra and M.A. Kouacou, Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration, J. Phys.: Condens. Matter, 1998, 10, p 1013–1032.

    Google Scholar 

  25. E. Rausch, B. Balke, S. Ouardi, C. Felser, Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation. Phys. Chem. Chem. Phys. 16 (2014) 25258-62.

  26. A. Karati, M. Vaidya and B.S. Murty, Comparison of different processing routes for the synthesis of semiconducting AlSb, J. Mater. Eng. Perform., 2018, 27, p 6196–6205.

    Article  CAS  Google Scholar 

  27. A. Karati, M. Nagini, S. Ghosh, R. Shabadi, K.G. Pradeep, R.C. Mallik, B.S. Murty and U.V. Varadaraju, Ti2NiCoSnSb-a new half-Heusler type high-entropy alloy showing simultaneous increase in Seebeck coefficient and electrical conductivity for thermoelectric applications, Sci. Rep., 2019, 9, p 5331-1–12.

    Article  Google Scholar 

  28. A. Karati, V.S. Hariharan, S. Ghosh, A. Prasad, M. Nagini, K. Guruvidyathri, R.C. Mallik, R. Shabadi, L. Bichler, B.S. Murty and U.V. Varadaraju, Thermoelectric properties of half-Heusler high-entropy Ti2NiCoSn1-xSb1+x (x = 0.5, 1) alloys with VEC>18, Scr. Mater., 2020, 186, p 375–380.

    Article  CAS  Google Scholar 

  29. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak and W.W. Scott, Binary Alloy Phase Diagrams Metals Park, American society for metals, OH, 1986.

    Google Scholar 

  30. T. Sekimoto, K. Kurosaki, H. Muta and S. Yamanaka, Annealing effect on thermoelectric properties of TiCoSb half-Heusler compound, J. Alloys Compd., 2005, 394, p 122–125.

    Article  CAS  Google Scholar 

  31. S. Tippireddy, D.S.P. Kumar, A. Karati, R. Anbalagan, P. Malar, K.H. Chen, B.S. Murty and R.C. Mallik, The effect of Sn substitution on the thermoelectric properties of synthetic tetrahedrite, ACS Appl. Mater. Interfaces., 2019, 11, p 21686–21696.

    Article  CAS  Google Scholar 

  32. J.V. Hoch, Michael, Thermal conductivity of TiC, J. Am. Ceram. Soc., 1963, 46, p 245–245.

    Article  CAS  Google Scholar 

  33. B. Liao, S. Lee, K. Esfarjani and G. Chen, First-principles study of thermal transport in FeSb2, Phys. Rev. B., 2014, 89, p 35108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Murty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4901 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karati, A., Ghosh, S., Mallik, R.C. et al. Effect of Processing Routes on the Microstructure and Thermoelectric Properties of Half-Heusler TiFe0.5Ni0.5Sb1−xSnx (x = 0, 0.05, 0.1, 0.2) Alloys. J. of Materi Eng and Perform 31, 305–317 (2022). https://doi.org/10.1007/s11665-021-06207-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06207-z

Keywords

Navigation