Skip to main content
Log in

Surface Integrity of NiTi Shape Memory Alloy in Milling with Cryogenic Heat Treated Cutting Tools under Different Cutting Conditions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the surface integrity of nickel-titanium (NiTi) shape memory alloys (SMAs) was investigated after face milling processes with cryogenically treated/untreated cemented carbide cutting tools at the conditions of dry cutting and minimum quantity lubrication (MQL) of cutting fluids depending on the changing cutting parameters. The integrity of surface layer of the workpiece material was evaluated according to the mean surface roughness, microstructure and hardness, as well as according to the resultant cutting force and flank wear of inserts. Cutting tests were carried out at three different cutting speeds (20, 35 and 50 m/min), feed rates (0.03, 0.07 and 0.14 mm/tooth) and a constant axial cutting depth (0.7 mm). The influence of these parameters on the surface integrity was extensively investigated. The face milling tests of NiTi SMA at optimal cutting parameters show that the surface integrity enhanced at a cutting speed of 50 m/min and feed rate of 0.03 mm/tooth using boron-added cutting fluid (EG + %5BX) with deep cryogenic heat treated (− 196 °C) CVD coated S40T grade cutting tool. Under MQL conditions, the minimum mean surface roughness (0.278 µm), resultant cutting force (268.2 N) and flank wear (0.18 mm) were obtained due to the high thermal conductivity and lubrication property of EG + %5BX cutting fluid. The highest hardness values (343 HV) were measured at the zone subjected to the highest deformation, while the lowest one (316 HV) was measured at the zone at the least deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Abbreviations

a p :

Axial depth of cut (mm)

Al2O3 :

Aluminum oxide

BUE:

Built-up edge

CPUnapplied:

Cryogenic process unapplied

CVD:

Chemical vapor deposition

EDS:

Energy-dispersive spectroscopy

EG:

Ethylene glycol

EG + %5BX:

Boron-added cutting fluid

F R :

Resultant cutting force (N)

f z :

Feed rate (mm/tooth)

H13A:

Uncoated cemented carbide grade

MQL:

Minimum quantity lubrication

NiTi:

Nickel-titanium

SEM:

Scanning electron microscope

SMA:

Shape memory alloy

S30T:

TiAlN-coated cemented carbide grade

S40T:

TiN/Al2O3/TiCN-coated cemented carbide grade

TiAlN:

Titanium aluminum nitride

TiCN:

Titanium carbon nitride

TiN:

Titanium nitride

Ra:

Mean surface roughness (µm)

VB:

Flank wear (mm)

V c :

Cutting speed (m/min)

References

  1. K. Mehta and K. Gupta, Machining of Shape Memory Alloys Fabrication and Processing of Shape Memory Alloysed, Springer, Berlin, 2019, p 9–37

    Book  Google Scholar 

  2. Q. Sun, R. Matsui, K. Takeda and E.A. Pieczyska, Advances in Shape Memory Materials, Springer, Cham, 2017.

    Book  Google Scholar 

  3. E. Kaya and İ Kaya, Tool Wear Progression of PCD and PCBN Cutting Tools in high Speed Machining of NiTi Shape Memory Alloy Under Various Cutting Speeds, Diam. Relat. Mater., 2020, 105, p 1–10.

    Article  Google Scholar 

  4. R. Rosnan, A.I. Azmi, M.N. Murad, Effects of Cutting Parameters on Tool Wear and Thrust Force in Drilling Nickel-Titanium (NiTi) Alloys Using Coated and Uncoated Carbide Tools, Key Engineering Materials, Trans Tech Publ, 2018, p 111-115

  5. F.H. Çakir and O.N. Çelik, Influence of Cryogenic Treatment on Microstructure and Mechanical Properties of Ti6Al4V Alloy, J. Mater. Eng. Perform., 2020, 29(10), p 6974–6984.

    Article  Google Scholar 

  6. S. Akıncıoğlu, H. Gökkaya and İ Uygur, The Effects of Cryogenic-Treated Carbide Tools on Tool Wear and Surface Roughness of Turning of Hastelloy C22 Based on Taguchi Method, Int. J. Adv. Manuf. Technol., 2016, 82(1–4), p 303–314.

    Article  Google Scholar 

  7. S. Akincioğlu, H. Gökkaya and İ Uygur, A Review of Cryogenic Treatment on Cutting Tools, Int. J. Adv. Manuf. Technol., 2015, 78(9–12), p 1609–1627.

    Article  Google Scholar 

  8. S.S. Gill, J. Singh, H. Singh and R. Singh, Investigation on Wear Behaviour of Cryogenically Treated TiAlN Coated Tungsten Carbide Inserts in Turning, Int. J. Mach. Tools Manuf., 2011, 51(1), p 25–33.

    Article  Google Scholar 

  9. S.S. Gill, R. Singh, H. Singh and J. Singh, Wear Behaviour of Cryogenically Treated Tungsten Carbide Inserts Under Dry and Wet Turning Conditions, Int. J. Mach. Tools Manuf., 2009, 49(3–4), p 256–260.

    Article  Google Scholar 

  10. A. Saini, B. Pabla and S. Dhami, Improvement in Performance of Cryogenically Treated Tungsten Carbide Tools in Face Milling of Ti-6Al-4V Alloy, Mater. Manuf. Process., 2020, 35(5), p 598–607.

    Article  CAS  Google Scholar 

  11. A. Khan and K. Maity, Comparative Study of Some Machinability Aspects in Turning of Pure Titanium with Untreated and Cryogenically Treated Carbide Inserts, J. Manuf. Process., 2017, 28(Part 1), p 272–284.

    Article  Google Scholar 

  12. A. Çiçek, T. Kıvak, I. Uygur, E. Ekici and Y. Turgut, Performance of Cryogenically Treated M35 HSS Drills in Drilling of Austenitic Stainless Steels, Int. J. Adv. Manuf. Technol., 2012, 60(1), p 65–73.

    Article  Google Scholar 

  13. Z.A. Zailani and P.T. Mativenga, Effects of Chilled Air on Machinability of NiTi Shape Memory Alloy, Procedia CIRP, 2016, 45(Supplement C), p 207–210.

    Article  Google Scholar 

  14. H. Bisaria and P. Shandilya, Surface Integrity Aspects for NiTi Shape Memory Alloys During Wire Electric Discharge Machining: A Review, J. Mater. Res., 2020, 35(6), p 537–558.

    Article  CAS  Google Scholar 

  15. T. Miller, K. Gupta, R. Laubscher, An Experimental Study on MQL Assisted High Speed Machining of NiTi Shape Memory Alloy, Proceedings of 16th International Conference on Manufacturing Research, 2018, p 80-85

  16. C. Velmurugan, V. Senthilkumar, S. Dinesh and D. Arulkirubakaran, Machining of NiTi-Shape Memory Alloys-A Review, Mach. Sci. Technol., 2018, 22(3), p 355–401.

    Article  CAS  Google Scholar 

  17. M.R. Ishak, A.R. Abu Bakar, A. Belhocine, J.M. Taib and W.Z.W. Omar, Brake Torque Analysis of Fully Mechanical Parking Brake System: Theoretical and Experimental Approach, Measurement, 2016, 94, p 487–497.

    Article  Google Scholar 

  18. Y. Kaynak, H.E. Karaca, R.D. Noebe and I.S. Jawahir, Tool-Wear Analysis in Cryogenic Machining of NiTi Shape Memory Alloys: A Comparison of Tool-Wear Performance with Dry and MQL Machining, Wear, 2013, 306(1), p 51–63.

    Article  CAS  Google Scholar 

  19. A.N.M. Khalil, A.I. Azmi, M.N. Murad and M.A.M. Ali, The effect of Cutting Parameters on Cutting Force and Tool Wear in Machining Nickel Titanium Shape Memory Alloy ASTM F2063 Under Minimum Quantity Nanolubricant, Procedia CIRP, 2018, 77, p 227–230.

    Article  Google Scholar 

  20. W. Fan, W. Ji, L. Wang, L. Zheng and Y. Wang, A Review on Cutting Tool Technology in Machining of Ni-Based Superalloys, Int. J. Adv. Manuf. Technol., 2020, 110(11), p 2863–2879.

    Article  Google Scholar 

  21. M.H. Cetin and S.K. Kilincarslan, Effects of Cutting Fluids with Nano-Silver and Borax Additives on Milling Performance of Aluminium Alloys, J. Manuf. Process., 2020, 50, p 170–182.

    Article  Google Scholar 

  22. K. Singh, A.K. Singh, K. Chattopadhyay, Effect of Machining Parameters and MQL Parameter on Material Removal Rate in Milling of Aluminium Alloy, Advances in Production and Industrial Engineeringed, Springer, 2020, p 359-368

  23. B. Kursuncu and A. Yaras, Assessment of the Effect of Borax and Boric Acid Additives in Cutting Fluids on Milling of AISI O2 Using MQL System, Int. J. Adv. Manuf. Technol., 2018, 95(5), p 2005–2013.

    Article  Google Scholar 

  24. K. Weinert, V. Petzoldt and D. Kötter, Turning and Drilling of NiTi Shape Memory Alloys, CIRP Ann., 2004, 53(1), p 65–68.

    Article  Google Scholar 

  25. Y. Kaynak, H.E. Karaca and I.S. Jawahir, Surface Integrity Characteristics of NiTi Shape Memory Alloys Resulting from Dry and Cryogenic Machining, Procedia CIRP, 2014, 13(Supplement C), p 393–398.

    Article  Google Scholar 

  26. E. Altas, H. Gokkaya, M.A. Karatas and D. Ozkan, Analysis of Surface Roughness and Flank Wear Using the Taguchi Method in Milling of NiTi Shape Memory Alloy with Uncoated Tools, Coatings, 2020, 10(12), p 1259.

    Article  CAS  Google Scholar 

  27. K. Kiliçay and M. Ulutan, Investigation of the Solid Lubrication Effect of Commercial Boron-Based Compounds in End Milling, Int. J. Precis. Eng. Manuf., 2016, 17(4), p 517–524.

    Article  Google Scholar 

  28. ISO 1832–2017 Indexable Inserts for Cutting Tools-Designation, ed., International Organization for Standardization, 2017

  29. W.T. Huang, D.H. Wu, S.P. Lin, J.T. Chen, Robust design of using MWCNTs in minimum quantity lubrication, Applied Mechanics and Materials, Trans Tech Publ, 2014, p 11-21

  30. Y. Kaynak, "Process-Induced Surface Integrity in Machining of NiTi Shape Memory Alloys, University of Kentucky, Kentucky, 2013.

    Google Scholar 

  31. C.V.U. Pons, Improvement of the One-Way and Two-Way Shape Memory Effects in Ti-Ni Shape Memory Alloys by Thermomechanical Treatments, University of Rovira i Virgili, Tarragona, 2011.

    Google Scholar 

  32. O. Benafan, R. Noebe, S.A. Padula II., D. Gaydosh, B. Lerch, A. Garg, G. Bigelow, K. An and R. Vaidyanathan, Temperature-Dependent Behavior of a Polycrystalline NiTi Shape Memory Alloy Around the Transformation Regime, Scripta Mater., 2013, 68(8), p 571–574.

    Article  CAS  Google Scholar 

  33. K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater Sci., 2005, 50(5), p 511–678.

    Article  CAS  Google Scholar 

  34. H. Gürbüz, U. Şeker and F. Kafkas, Investigation of Effects of Cutting Insert Rake Face Forms on Surface Integrity, Int. J. Adv. Manuf. Technol., 2017, 90(9–12), p 3507–3522.

    Article  Google Scholar 

  35. N. Sharma, K. Gupta and J.P. Davim, On Wire Spark Erosion Machining Induced Surface Integrity of Ni 55.8 Ti Shape Memory Alloys, Archiv. Civ. Mech. Eng., 2019, 19, p 680–693.

    Article  Google Scholar 

  36. H. Çalışkan, P. Panjan, C. Kurbanoglu, Hard Coatings on Cutting Tools and Surface Finish, Comprehensive Materials Finishinged., M.S.J. Hashmi, Ed., Elsevier, 2017, p 230-242

  37. W.F. Sales, J. Schoop, L.R. da Silva, Á.R. Machado and I. Jawahir, A Review of Surface Integrity in Machining of Hardened Steels, J. Manuf. Process., 2020, 58, p 136–162.

    Article  Google Scholar 

  38. M.A. Makhesana and K.M. Patel, Performance of PVD and CVD Coated Cutting Tool Inserts in Machining Under MQL-MQSL Environment, Int. J. Mechatron. Manuf. Syst., 2020, 13(3), p 210–229.

    Google Scholar 

  39. F.J.G. Silva, R.P. Martinho, C. Martins, H. Lopes and R.M. Gouveia, Machining GX2CrNiMoN26-7-4 DSS Alloy: Wear Analysis of TiAlN and TiCN/Al2O3/TiN Coated Carbide Tools Behavior in Rough End Milling Operations, Coatings, 2019, 9(6), p 392.

    Article  CAS  Google Scholar 

  40. A. Palanisamy, T. Selvaraj and S. Sivasankaran, Optimization of Turning Parameters of Machining Incoloy 800H Superalloy Using Cryogenically Treated Multilayer CVD-Coated Tool, Arab. J. Sci. Eng., 2018, 43(9), p 4977–4990.

    Article  CAS  Google Scholar 

  41. M.C. Shaw and J. Cookson, Metal Cutting Principles, Oxford University Press, New York, 2005.

    Google Scholar 

  42. K. Weinert and V. Petzoldt, Machining of NiTi Based Shape Memory Alloys, Mater. Sci. Eng. A, 2004, 378(1), p 180–184.

    Article  Google Scholar 

  43. B. Kursuncu, Influence of Cryogenic Heat-Treatment Soaking Period and Temperature on Performance of Sintered Carbide Cutting Tools in Milling of Inconel 718, Int. J. Refract. Metals Hard Mater., 2020, 92, p 105323.

    Article  CAS  Google Scholar 

  44. M. Granito, A cooling System for S.M.A. (Shape Memory Alloy) Based on the Use of Peltier Cells, University of Naples “Federico II”, 2010

  45. A. Sergueeva, C. Song, R. Valiev and A. Mukherjee, Structure and Properties of Amorphous and Nanocrystalline NiTi Prepared by Severe Plastic Deformation and Annealing, Mater. Sci. Eng. A, 2003, 339(1–2), p 159–165.

    Article  Google Scholar 

  46. M.C. Kong, D. Axinte and W. Voice, Challenges in Using Waterjet Machining of NiTi Shape Memory Alloys: An Analysis of Controlled-Depth Milling, J. Mater. Process. Technol., 2011, 211(6), p 959–971.

    Article  CAS  Google Scholar 

  47. E. Kaya and İ Kaya, A Review on Machining of NiTi Shape Memory Alloys: The Process and Post Process Perspective, Int. J. Adv. Manuf. Technol., 2018, 2018, p 1–43.

    Google Scholar 

  48. E. Zanaboni, One Way and Two Way–Shape Memory Effect: Thermo–Mechanical Characterization of Ni–Ti wires, 2007/2008

  49. K. Gall, J. Tyber, G. Wilkesanders, S.W. Robertson, R.O. Ritchie and H.J. Maier, Effect of Microstructure on the Fatigue of Hot-Rolled and Cold-Drawn NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2008, 486(1–2), p 389–403.

    Article  Google Scholar 

  50. G. Wang, Z. Liu, W. Huang, B. Wang and J. Niu, Influence of Cutting Parameters on Surface Roughness and Strain Hardening During Milling NiTi Shape Memory Alloy, Int. J. Adv. Manuf. Technol., 2019, 102(5–8), p 2211–2221.

    Article  Google Scholar 

  51. G. Wang, Z. Liu, X. Ai, W. Huang and J. Niu, Effect of Cutting Parameters on Strain Hardening of Nickel–Titanium Shape Memory Alloy, Smart Mater. Struct., 2018, 27(7), p 075027.

    Article  Google Scholar 

  52. H. Gökkaya, The Effects of Machining Parameters on Cutting Forces, Surface Roughness, Built-Up Edge (BUE) and Built-Up Layer (BUL) During Machining AA2014 (T4) Alloy, Strojniski Vestnik J. Mech. Eng., 2010, 56(9), p 584–593.

    Google Scholar 

  53. H. Gökkaya and M. Nalbant, The Effects of Cutting Tool Coating on the Surface Roughness of AISI 1015 Steel Depending on Cutting Parameters, Turk. J. Eng. Environ. Sci., 2007, 30(5), p 307–316.

    Google Scholar 

  54. R. Piquard, A. D’Acunto, P. Laheurte and D. Dudzinski, Micro-End Milling of NiTi Biomedical Alloys, Burr Formation and Phase Transformation, Precis. Eng., 2014, 38(2), p 356–364.

    Article  Google Scholar 

  55. F. Pusavec, H. Hamdi, J. Kopac and I. Jawahir, Surface Integrity in Cryogenic Machining of Nickel Based Alloy—Inconel 718, J. Mater. Process. Technol., 2011, 211(4), p 773–783.

    Article  CAS  Google Scholar 

  56. R. Msaoubi, J. Outeiro, H. Chandrasekaran, O. Dillon and I. Jawahir, A Review of Surface Integrity in Machining and Its Impact on Functional Performance and Life of Machined Products, Int. J. Sustain. Manuf., 2008, 1(1–2), p 203–236.

    Google Scholar 

  57. M.E. M’itwally and M. Farag, Effect of cold work and annealing on the structure and characteristics of NiTi alloy, Mater. Sci. Eng., A, 2009, 519(1–2), p 155–166.

    Article  Google Scholar 

  58. H. Shahmir, M. Nili-Ahmadabadi, M. Mansouri-Arani and T.G. Langdon, The Processing of NiTi Shape Memory Alloys by Equal-Channel Angular Pressing at Room Temperature, Mater. Sci. Eng. A, 2013, 576, p 178–184.

    Article  CAS  Google Scholar 

  59. S. Ii, K. Yamauchi, Y. Maruhashi and M. Nishida, Direct Evidence of Correlation Between {2 0 1} B19′ and {1 1 4} B2 Deformation Twins in Ti-Ni Shape Memory Alloy, Scr. Mater., 2003, 49(7), p 723–727.

    Article  CAS  Google Scholar 

  60. T. Hu, L. Chen, S. Wu, C. Chu, L. Wang, K. Yeung and P.K. Chu, Graded Phase Structure in the Surface Layer of NiTi Alloy Processed by Surface Severe Plastic Deformation, Scr. Mater., 2011, 64(11), p 1011–1014.

    Article  CAS  Google Scholar 

  61. M. Nishida, M. Matsuda, T. Fujimoto, K. Tanka, A. Kakisaka and H. Nakashima, Crystallography of Deformation Twin Boundaries in a B2 type Ti-Ni alloy, Mater. Sci. Eng. A, 2006, 438, p 495–499.

    Article  Google Scholar 

Download references

Acknowledgments

The experimental setup and the materials used in this study were designed within the scope of Karabuk University BAP Project No. FDK-2020-2197. The authors would like to thank Karabuk University, BAP Projects Unit, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Altas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altas, E., Altin Karatas, M., Gokkaya, H. et al. Surface Integrity of NiTi Shape Memory Alloy in Milling with Cryogenic Heat Treated Cutting Tools under Different Cutting Conditions. J. of Materi Eng and Perform 30, 9426–9439 (2021). https://doi.org/10.1007/s11665-021-06095-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06095-3

Keywords

Navigation