Skip to main content
Log in

Postprocessing of Additively Manufactured Metal Parts

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article describes postprocessing techniques for machining, finishing, heat treating, and deburring used to remove additive manufacturing (AM) metallic workpieces from a base plate and subsequent techniques to enhance printed workpieces. The AM processes include powder bed fusion, binder jetting, and direct energy deposition. The discussion provides information on powder removal, powder recycling and conditioning, part removal, and part enhancement. The mechanism, applications, advantages, and limitations of mechanical, radiation, and chemical finishing processes as well as the properties of the resulting material are also covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Source: (Ref 5)

Fig. 4

Source: (Ref 1)

Fig. 5

Source: (Ref 6)

Fig. 6

Source: Ref 7

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Source: (Ref 11)

Fig. 14

Source: (Ref 13)

Fig. 15

Source: (Ref 14)

Fig. 16

Source: (Ref 15)

Fig. 17

Source: (Ref 17)

Fig. 18

Source: (Ref 18)

Fig. 19

Source: (Ref 19)

Fig. 20
Fig. 21
Fig. 22
Fig. 23

Source: (Ref 21)

Fig. 24

Source: (Ref 25)

Fig. 25

Source: Ref 25

Fig. 26

Source: (Ref 26)

Fig. 27

Source: (Ref 26)

Fig. 28

Source: (Ref 27)

Fig. 29

Source: (Ref 28)

Fig. 30

Source: Ref 28

Fig. 31

Source: (Ref 31)

Fig. 32

Source: Ref 31

Fig. 33

Source: Ref 31

Fig. 34

Source: (Ref 32)

Fig. 35

Source: (Ref 32)

Fig. 36
Fig. 37
Fig. 38

Source: (Ref 4)

Fig. 39
Fig. 40
Fig. 41

Source: (Ref 34)

References

  1. L.C. Ardila, F. Garciandia, J.B. González-Díaz, P. Álvarez, A. Echeverria, M.M. Petite, R. Deffley and J. Ochoa, Effect of IN718 Recycled Powder Reuse on Properties of Parts Manufactured by Means of Selective Laser Melting, Phys. Procedia, 2014, 56, p 99–107. https://doi.org/10.1016/j.phpro.2014.08.152

    Article  Google Scholar 

  2. H. Asgari, C. Baxter, K. Hosseinkhani and M. Mohammadi, On Microstructure and Mechanical Properties of Additively Manufactured AlSi10Mg 200C using Recycled Powder, Mater. Sci. Eng. A, 2017, 707, p 148–158. https://doi.org/10.1016/j.msea.2017.09.041

    Article  CAS  Google Scholar 

  3. A. Hadadzadeh, C. Baxter, B.A. Shalchi and M. Mohammadi, Strengthening Mechanisms in Direct Metal Laser Sintered AlSi10Mg: Comparison Between Virgin and Recycled Powders, Addit. Manuf., 2018, 23, p 108–120. https://doi.org/10.1016/j.addma.2018.07.014

    Article  CAS  Google Scholar 

  4. H.A. Maamoun, M. Elbestawi, G.K. Dosbaeva and S.C. Veldhuis, Thermal Post-Processing of AlSi10Mg Parts Produced by Selective Laser Melting using Recycled Powder, Addit. Manuf., 2018, 21, p 234–247. https://doi.org/10.1016/j.addma.2018.03.014

    Article  CAS  Google Scholar 

  5. J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson and M.A. Peltz, Characterization of Metal Powders Used for Additive Manufacturing, J. Res. Nat. Inst. Stand. Technol., 2014, 119, p 460–493. https://doi.org/10.6028/jres.119.018

    Article  CAS  Google Scholar 

  6. M.X. Gan and C.H. Wong, Practical Support Structures for Selective Laser Melting, J. Mater. Process. Technol., 2016, 238, p 474–484. https://doi.org/10.1016/j.jmatprotec.2016.08.006

    Article  Google Scholar 

  7. https://grabcad.com/library/math-visualization-gyroid-1. Accessed 19 Jun 2019

  8. N.N. Kumbhar and A.V. Mulay, Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review, J. Inst. Eng. India Ser. C, 2018, 99(4), p 481–487. https://doi.org/10.1007/s40032-016-0340-z

    Article  Google Scholar 

  9. R.K. Ananda-Kumara, W. Moscoso-Kingsley, G. Jacob, A. Donmez and V. Madhavan, Machining Behavior of Additively Manufactured and Cast-Wrought Nickel-Based Superalloy (IN 625), Procedia Manuf., 2018, 26, p 595–606. https://doi.org/10.1016/j.promfg.2018.07.070

    Article  Google Scholar 

  10. G. Bonaiti, P. Parenti, M. Annoni and S. Kapoor, Micro-Milling Machinability of DED Additive Titanium Ti-6Al-4V, Procedia Manuf., 2017, 10, p 497–509. https://doi.org/10.1016/j.promfg.2017.07.104

    Article  Google Scholar 

  11. M. Sadiq, M.N. Hoang, N. Valencia, S. Obeidat and N.P. Hung, Experimental Study of Micromilling Selective Laser Melted Inconel 718 Superalloy, Procedia Manuf., 2018, 26, p 983–992. https://doi.org/10.1016/j.promfg.2018.07.129

    Article  Google Scholar 

  12. J. Mazumder, J. Nui, and A. Shih, High-Speed, Ultra Precision Manufacturing Station That Combines Direct Metal Deposition and EDM, U.S. Patent 2007/0205184 A1, 6 Sept 2007

  13. E. Atzenia, M. Barlettab, F. Calignanoc, L. Iulianoa, G. Rubinod and V. Tagliaferri, Abrasive Fluidized Bed (AFB) Finishing of AlSi10Mg Substrates Manufactured by Direct Metal Laser Sintering (DMLS), Addit. Manuf., 2016, 10, p 15–23. https://doi.org/10.1016/j.addma.2016.01.005

    Article  CAS  Google Scholar 

  14. Abrasive Flow Machining (AFM) Guidelines, 2016, Extrude Hone

  15. M.S. Duval-Chaneac, S. Hana, C. Claudin, F. Salvatore, J. Bajolet and J. Rech, Experimental Study on Finishing of Internal Laser Melting (SLM) Surface with Abrasive Flow Machining (AFM), Precis. Eng., 2018, 54, p 1–6. https://doi.org/10.1016/j.precisioneng.2018.03.006

    Article  Google Scholar 

  16. Extrude Hone for Additive Manufacturing—Advanced Finishing Technology, 2018, Extrude Hone

  17. M. Jamal and M.N. Morgan, Design Process Control for Improved Surface Finish of Metal Additive Manufactured Parts of Complex Build Geometry, J. MDPI Invent., 2017 https://doi.org/10.3390/inventions2040036

    Article  Google Scholar 

  18. D. Fletcher and F. Cooper, The precious project: Polishing and finishing of additive manufacturing (AM) industry, https://www.academia.edu May 2018, p 211–234

  19. F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano and P. Fino, Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS, J. Adv. Manuf. Technol., 2013, 67, p 2743–2751. https://doi.org/10.1007/s00170-012-4688-9

    Article  Google Scholar 

  20. K.L. Tan and S.H. Yeo, Surface Modification of Additive Manufactured Components by Ultrasonic Cavitation Abrasive Finishing, Wear, 2017, 378–379, p 90–95. https://doi.org/10.1016/j.wear.2017.02.030

    Article  CAS  Google Scholar 

  21. A. Lamikiz, J.A. Sanchez, L.N. Lopez de Lacalle and J.L. Arana, Laser polishing of Parts Built Up by Selective Laser Sintering, J. Mach. Tools Manuf., 2007, 47, p 2040–2050. https://doi.org/10.1016/j.ijmachtools.2007.01.013

    Article  Google Scholar 

  22. Z. Fang, L. Lu, L. Chen and Y. Guan, Laser Polishing of Additive Manufactured Superalloy, Procedia CIRP, 2018, 71, p 150–154. https://doi.org/10.1016/j.procir.2018.05.088

    Article  Google Scholar 

  23. C.P. Ma, Y.C. Guan and W. Zhou, Laser Polishing of Additive Manufactured Ti Alloys, J. Opt. Lasers Eng., 2017, 93, p 171–177. https://doi.org/10.1016/j.optlaseng.2017.02.005

    Article  Google Scholar 

  24. S. Marimuthu, A. Triantaphyllou, M. Antar, D. Wimpenny, H. Morton and M. Beard, Laser Polishing of Selective Laser Melted Components, J. Mach. Tools Manuf., 2015, 95, p 97–104. https://doi.org/10.1016/j.ijmachtools.2015.05.002

    Article  Google Scholar 

  25. K.C. Yung, T.Y. Xiao, H.S. Choy, W.J. Wang and Z.X. Cai, Laser Polishing of Additive Manufactured CoCr Alloy Components with Complex Surface Geometry, J. Mater. Process. Technol., 2018, 262, p 53–64. https://doi.org/10.1016/j.jmatprotec.2018.06.019

    Article  CAS  Google Scholar 

  26. S. Hallmanna, T. Wolny and C. Emmelmann, Post-Processing of Additively Manufactured Cutting Edges by Laser Ablation, Procedia CIRP, 2018, 74, p 276–279. https://doi.org/10.1016/j.procir.2018.08.110

    Article  Google Scholar 

  27. N. Worts, J. Jones and J. Squier, Surface Structure modification of Additively Manufactured Titanium Components via Femtosecond Laser Micromachining, J. Opt Commun., 2019, 430, p 352–357. https://doi.org/10.1016/j.optcom.2018.08.055

    Article  CAS  Google Scholar 

  28. E. Łyczkowska, P. Szymczyk, B. Dybała and E. Chlebus, Chemical Polishing of Scaffolds made of Ti–6Al–7Nb Alloy by Additive Manufacturing, Arch. Civ. Mech. Eng., 2014, 14, p 586–594. https://doi.org/10.1016/j.acme.2014.03.001

    Article  Google Scholar 

  29. Z. Baicheng, L. Xiaohua, B. Jiaming, G. Junfeng, W. Pan, S. Chen-nan, N. Muiling, Q. Guojun and W. Jun, Study of Selective Laser Melting (SLM) Inconel 718 Part Surface Improvement by Electrochemical Polishing, Mater. Des., 2017, 116, p 531–537. https://doi.org/10.1016/j.matdes.2016.11.103

    Article  CAS  Google Scholar 

  30. AFM Technology Handbook, 2018, Extrude Hone

  31. S. Jain, J. Hyder, M. Corliss, B.L. Tai, and W.N.P. Hung, “Electrochemical polishing of selective laser melted Inconel 718. In: Proc. 47th SME NA Manuf. Res. Conf. (NAMRC 47), 201910.1016/j.promfg.2019.06.145

  32. C. Rotty, M.-L. Doche, A. Mandroyan and J.-Y. Hihn, Electropolishing Behavior of Additive Layer Manufacturing 316l Stainless Steel in Deep Eutectic Solvents, Electrochem. Soc. ECS Trans., 2017, 77(11), p 1199–1207. https://doi.org/10.1149/07711.1199ecst

    Article  CAS  Google Scholar 

  33. H. Zeidler, F. Boettger-Hiller, J. Edelmann and A. Schubert, Surface Finish Machining of Medical Parts using Plasma Electrolytic Polishing, Procedia CIRP, 2016, 49, p 83–87. https://doi.org/10.1016/j.procir.2015.07.038

    Article  Google Scholar 

  34. J. Kim and H.W. Park, Hybrid Deburring Process Assisted by a Large Pulsed Electron Beam (LPEB) for Laser-Fabricated Patterned Metal masks, Appl. Surf. Sci., 2015, 357, p 1676–1683. https://doi.org/10.1016/j.apsusc.2015.10.047

    Article  CAS  Google Scholar 

Selected References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Hung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 ASM International. This article is reprinted with permission from Additive Manufacturing Processes, Vol 24, ASM Handbook, David L. Bourell, William Frazier, Howard Kuhn, and Mohsen Seifi, editors, ASM International, 2020, p 298–315, https://doi.org/10.31399/asm.hb.v24.a0006570

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, W. Postprocessing of Additively Manufactured Metal Parts. J. of Materi Eng and Perform 30, 6439–6460 (2021). https://doi.org/10.1007/s11665-021-06037-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06037-z

Keywords

Navigation