Skip to main content
Log in

Deformation Behavior of Cu-6.5 wt.% Al Alloy Under Quasi-Static Tensile Loading

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Wire-arc additive manufacturing (WAAM) based on cold metal transfer (CMT) welding process has been used to fabricate Cu-6.5 wt.% Al alloy by simultaneously feeding two separate wires. The deformation behavior of as-fabricated Cu-6.5 wt.% Al alloy and heat-treated Cu-6.5 wt.% Al alloy under quasi-static (0.1 s−1) tension was investigated. The obtained tensile results show that the heat treatment can improve the mechanical properties. The enhancements of strength and ductility originate from the work-hardening capacity and fine grain due to solid solution strengthening. The TEM characterization of the samples has shown the existence of deformation twinning. The optical micrographs have shown that during the tensile process, cracks are first formed inside the large grains, and then the cracks propagate, which cause dendritic columnar structure are broken into fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Hao, X.X. Wu, X.Y. San, S. Li and X.K. Zhu, The Influence of Stacking Fault Energy on Compression Test of Cu and Cu-Al Alloys, Procedia Eng., 2012, 36, p 307–315.

    Article  Google Scholar 

  2. C.X. Huang, W. Hu, G. Yang, Z.F. Zhang, S.D. Wu, Q.Y. Wang and G. Gottstein, The Effect of Stacking Fault Energy on Equilibrium Grain Size and Tensile Properties of Nanostructured Copper and Copper-Aluminum Alloys Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 556, p 638–647.

    Article  CAS  Google Scholar 

  3. X.H. An, Q.Y. Lin, S.D. Wu and Z.F. Zhang, Microstructural Evolution and Shear Fracture of Cu-16at.% Al Alloy Induced by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2010, 527, p 4510–4514.

    Article  Google Scholar 

  4. Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita and T.G. Langdon, Tailoring Stacking Fault Energy for High Ductility and High Strength in Ultrafine Grained Cu and Its Alloy, Appl. Phys. Lett., 2006, 89, p 121906.

    Article  Google Scholar 

  5. A.V. Yanilkin, V.S. Krasnikov, A.Y. Kuksin and A.E. Mayer, Dynamics and Kinetics of Dislocations in Al and Al-Cu Alloy under Dynamic Loading, Int. J. Plast., 2014, 55, p 94–107.

    Article  CAS  Google Scholar 

  6. A.I. Shakhalova and G.I., Evplov, , Structure and Mechanical Properties of Cu-Al Alloys Under Pulsed Compression, Strength Mater., 1992, 24, p 469–471.

    Article  Google Scholar 

  7. M.Z. Butt, Solid-Solution Hardening in Dilute and Concentrated Alloys, Philos. Mag. Lett., 1989, 60(4), p 141–145.

    Article  CAS  Google Scholar 

  8. A. Rohatgi, K.S. Vecchio and G.T. Gray, The Influence of Stacking Fault Energy on the Mechanical Behavior of Cu and Cu-Al Alloys: Deformation Twinning, Work Hardening, and Dynamic Recovery, Metall. Mater. Trans. A, 2001, 32A, p 135–145.

    Article  CAS  Google Scholar 

  9. Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita and T.G. Langdon, Influence of Stacking Fault Energy on the Minimum Grain Size Achieved in Severe Plastic Deformation, Mater. Sci. Eng. A, 2007, 463(1–2), p 22–26.

    Article  Google Scholar 

  10. C.X. Ren, Q. Wang, J.P. Hou, Z.J. Zhang, H.J. Yang and Z.F. Zhang, Exploring the Strength and Ductility Improvement of Cu-Al Alloys, Mater. Sci. Eng. A, 2020, 786, p 139441.

    Article  CAS  Google Scholar 

  11. Z. Zeng, B.Q. Cong, J.P. Oliveira, W.C. Ke, N. Schell, B. Peng, Z.W. Qi, F.G. Ge, W. Zhang and S.S. Ao, Wire and Arc Additive Manufacturing of a Ni-Rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties, Addit. Manuf., 2020, 32, p 101051.

    CAS  Google Scholar 

  12. T.A. Rodrigues, V.R. Duarte, D. Tomás, J.A. Avila, J.D. Escobar, E. Rossinyol, N. Schell, T.G. Santos and J.P. Oliveira, In-Situ Strengthening of a High Strength Low Alloy Steel during Wire and Arc Additive Manufacturing (WAAM), Addit. Manuf., 2020, 34, p 101200.

    CAS  Google Scholar 

  13. C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia and S.T. Newman, Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing, Addit. Manuf., 2018, 22, p 672–686.

    Google Scholar 

  14. Y. Wang, X. Chen, S. Konovalov, C. Su, A.N. Siddiquee and N. Gangil, In-Situ Wire-Feed Additive Manufacturing of Cu-Al Alloy by Addition of Silicon, Appl. Surf. Sci., 2019, 487, p 1366–1375.

    Article  CAS  Google Scholar 

  15. ASTM E8/E8M-13, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2013.

    Google Scholar 

  16. G. Winiarski and T. Bulzak, Effect of Annealing Time and Temperature Parameters on the Microstructure, Hardness, and Strain-Hardening Coefficients of 42CrMo4 Steel, Materials, 2020, 13, p 1–16.

    Google Scholar 

  17. D.Y. Ying and D.L. Zhang, Solid-State Reactions between Cu and Al during Mechanical Alloying and Heat Treatment, J. Alloys Compd., 2000, 311(2), p 275–282.

    Article  CAS  Google Scholar 

  18. Y. Ma, D. Cuiuri, N. Hoye, H. Li and Z. Pan, Characterization of In-Situ Alloyed and Additively Manufactured Titanium Aluminides, Metall. Mater. Trans. B, 2014, 45(6), p 2299–2303.

    Article  CAS  Google Scholar 

  19. B. Dong, Z. Pan, C. Shen, Y. Ma and H. Li, Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process, Metall. Mater. Trans. B, 2017, 48(6), p 3143–3151.

    Article  CAS  Google Scholar 

  20. L.L. DerekHull, X. Li, F. Dong, C. Du and J. Gao, Observing, Measuring and Interpreting Fracture Surface Topography, Science Press, Beijing, 2009, p 25–28

    Google Scholar 

  21. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu and Z.F. Zhang, Microstructural Evolution and Mechanical Properties of Cu-Al Alloys Subjected to Equal Channel Angular Pressing, Acta Mater., 2009, 57(5), p 1586–1601.

    Article  CAS  Google Scholar 

  22. Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungár, Y.M. Wang, E. Ma and R.Z. Valiev, Nanostructures in Ti Processed by Severe Plastic Deformation, J. Mater. Res., 2003, 18(8), p 1908–1917.

    Article  CAS  Google Scholar 

  23. S.V. Dobatkin, E.N. Bastarache, G. Sakai, T. Fujita, Z. Horita and T.G. Langdon, Grain Refinement and Superplastic Flow in an Aluminum Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2005, 408(1–2), p 141–146.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China under the Grant No. 51975419.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizhang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Konovalov, S., Chen, X. et al. Deformation Behavior of Cu-6.5 wt.% Al Alloy Under Quasi-Static Tensile Loading. J. of Materi Eng and Perform 30, 5086–5092 (2021). https://doi.org/10.1007/s11665-021-05643-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05643-1

Keywords

Navigation