Skip to main content
Log in

One-Pot Preparation of Electroactive Shape Memory Polyurethane/Carbon Black Blend

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Shape memory polymers are the materials that can recover their original shape after a large deformation when exposed to an external stimulus such as electric field, pH, temperature, light, magnetism or humidity. With these properties, it is possible to use them in many areas in the industry. In this study, a shape-memory polymer compound was developed which is capable of changing its shape when subjected to an external voltage. Electroactive shape memory polymer compound was prepared by mixing commercially available and economically viable thermoplastic shape memory polyurethane (SMPU) with carbon black (CB), which has low cost and high electrical conductivity, by adding at various proportions. Conductivity, structural, morphological, homogeneity, thermal, rheological and shape memory characterizations of the SMPU/CB blend were carried out by four-probe measurements, ATR-FTIR spectroscopy, x-ray diffraction analysis, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analyses, melt flow index (MFI), and a thermal camera imaging methods, respectively. The effects of CB loading ratios on these characteristics of SMPU/CB blends were investigated. It was concluded that SMPU/20CB blend can be used as a commercial material having shape memory characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Guo, Z. Lv, Y. Huo, L. Sun, S. Chen, Z. Liu, C. He, X. Bi, X. Fan, and Z. You, A Biodegradable Functional Water-Responsive Shape Memory Polymer for Biomedical Applications, J. Mater. Chem. B, 2019, 7, p 123

    Article  CAS  Google Scholar 

  2. M. Sáenz-PéRez, T. Bashir, J.M. Laza, J. García-Barrasa, J. Luis Vilas, M. Skrifvars, and L.M. Leó, Novel Shape-Memory Polyurethane Fibers for Textile Applications, Text. Res. J., 2018, 89(6), p 1027–1037

    Article  Google Scholar 

  3. Y. Yan, H. Xia, Y. Qiu, Z. Xu, and Q.Q. Ni, Multi-Layer Graphene Oxide Coated Shape Memory Polyurethane for Adjustable Smart Switches, Compos. Sci. Technol., 2019, 172, p 108–116

    Article  CAS  Google Scholar 

  4. Y. Liu, H. Du, L. Liu, and J. Leng, Shape Memory Polymers and Their Composites in Aerospace Applications: A Review, Smart Mater. Struct., 2014, 23, p 23001

    Article  Google Scholar 

  5. D.I. Arun, K.S. Santhosh Kumar, B.S. Kumar, P. Chakravarthy, M. Dona, B. Santhosh, and B. Satheesh Kumar, High Glass-Transition Polyurethane-Carbon Black Electro-Active Shape Memory Nanocomposite for Aerospace Systems, Mater. Sci. Technol., 2019, 35(5), p 596–605

    Article  CAS  Google Scholar 

  6. E.A. Pieczyska, M. Maj, K. Kowalczyk-Gajewska, M. Staszczak, L. Urbanski, H. Tobushi, S. Hayashi, and M. Cristea, Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane, J. Mater. Eng. Perform., 2014, 23(7), p 2553–2560

    Article  CAS  Google Scholar 

  7. M.Z. Dehaghani and B. Kaffashi, Shape Memory Thin Films of Polyurethane: Synthesis, Characterization, and Recovery Behavior, J. Appl. Polym. Sci., 2020, 137, p e49547

    Article  Google Scholar 

  8. R. Lotfi Mayan Sofla, M. Rezaei, A. Babaie, and M. Nasiri, Preparation of Electroactive Shape Memory Polyurethane/Graphene Nanocomposites and Investigation of Relationship between Rheology Morphology and Electrical Properties, Compos. Part B Eng., 2019, 175, p 107090

    Article  CAS  Google Scholar 

  9. T.S. Hansen, K. West, O. Hassager, and N.B. Larsen, Highly Stretchable and Conductive Polymer Material Made from Poly(3,4-Ethylenedioxythiophene) and Polyurethane Elastomers, Adv. Funct. Mater., 2007, 17(16), p 3069–3073

    Article  CAS  Google Scholar 

  10. F. Li, L. Qi, J. Yang, M. Xu, X. Luo, and D. Ma, Polyurethane/Conducting Carbon Black Composites: Structure, Electric Conductivity, Strain Recovery Behavior, and Their Relationships, J. Appl. Polym. Sci., 2000, 75, p 68–77

    Article  CAS  Google Scholar 

  11. J. Leng, H. Lv, Y. Liu, and S. Du, Electroactivate Shape-Memory Polymer Filled with Nanocarbon Particles and Short Carbon Fibers, Appl. Phys. Lett., 2007, 91, p 144105

    Article  Google Scholar 

  12. H.-F. Lee and H. Her Yu, Study of Electroactive Shape Memory Polyurethane-Carbon Nanotube Hybrids, Soft Matter, 2011, 7, p 3801

    Article  CAS  Google Scholar 

  13. S.I. Gunes, F. Cao, and S.C. Jana, Evaluation of Nanoparticulate Fillers for Development of Shapememory Polyurethane Nanocomposites, Polymer, 2008, 49, p 2223–2234

    Article  CAS  Google Scholar 

  14. S. Chen, S. Yang, Z. Li, S. Xu, H. Yuan, S. Chen, and Z. Ge, Electroactive Two-Way Shape Memory Polymer Laminates, Polym. Compos., 2015, 36(3), p 439–444

    Article  Google Scholar 

  15. A. Babaie, M. Rezaei, and R.L.M. Sofla, Investigation of the Effects of PCL Molecular Weight and Graphene Content on Crystallinity, Mechanical Properties and Shape Memory Behavior of Polyurethane/Graphene Nanocomposites, J. Mech. Behav. Biomed. Mater., 2019, 96, p 53–68

    Article  CAS  Google Scholar 

  16. M. Zarghami Dehaghani, B. Kaffashi, J.T. Haponiuk, and L. Piszczyk, Shape Memory Thin Films of Polyurethane: Does Graphene Content Affect the Recovery Behavior of Polyurethane Nanocomposites?, Polym. Compos., 2020, 41, p 3376–3388

    Article  CAS  Google Scholar 

  17. X. Zhou, B. Hu, W.Q. Xiao, L. Yan, Z.J. Wang, J.J. Zhang, H.L. Lin, J. Bian, and Y. Lu, Morphology and Properties of Shape Memory Thermoplastic Polyurethane Composites Incorporating Graphene-Montmorillonite Hybrids, J. Appl. Polym. Sci., 2018, 135(15), p 46149

    Article  Google Scholar 

  18. B. Yang, W.M. Huang, C. Li, and J.H. Chor, Effects of Moisture on the Glass Transition Temperatureof Polyurethane Shape Memory Polymer Filledwith Nano-Carbon Powder, Eur. Polym. J., 2005, 41, p 1123–1128

    Article  CAS  Google Scholar 

  19. K. Gall, M.L. Dunn, Y. Liu, D. Finch, M. Lake, and N.A. Munshi, Shape Memory Polymer Nanocomposites, Acta Mater., 2002, 50, p 5115–5126

    Article  CAS  Google Scholar 

  20. Y. Dong, Q.Q. Ni, and Y. Fu, Preparation and Characterization of Water-Borne Epoxy Shape Memory Composites Containing Silica, Compos. Part A Appl. Sci. Manuf., 2015, 72, p 1–10

    Article  CAS  Google Scholar 

  21. D. Santiago, F. Ferrando, and S. De La Flor, Effect of Different Shape-Memory Processing Methods on the Thermomechanical Cyclic Properties of a Shape-Memory Polyurethane, J. Mater. Eng. Perform., 2014, 23, p 2561–2566

    Article  CAS  Google Scholar 

  22. F.K. Li, X. Zhang, J.N. Hou, M. Xu, X.L. Luo, D.Z. Ma, and B.K. Kim, Studies on Thermally Stimulated Shape Memory Effectof Segmented Polyurethanes, Appl. Polym. Sci., 1997, 64, p 1511–1516

    Article  CAS  Google Scholar 

  23. K.K. Byung and Y.L. Sang, Polyurethanes Having Shape Memory Effects, Polymer, 1996, 37, p 5781–5793

    Article  Google Scholar 

  24. Y. Zhu, J. Hu, K.-F. Choi, K.-W. Yeung, Q. Meng, and S. Chen, Crystallization and Melting Behavior of the Crystalline Soft Segment in a Shape-Memory Polyurethane Ionomer, J. Appl. Polym. Sci., 2008, 107(1), p 599–609

    Article  CAS  Google Scholar 

  25. E. Jakab and M. Blazsó, The Effect of Carbon Black on the Thermal Decomposition of Vinyl Polymers, J. Anal. Appl. Pyrol., 2002, 64(2), p 263–277

    Article  CAS  Google Scholar 

  26. J. Kaursoin and A.K. Agrawal, Melt Spun Thermoresponsive Shape Memory Fibers Based on Polyurethanes: Effect of Drawing and Heat-Setting on Fiber Morphology and Properties, J. Appl. Polym. Sci., 2007, 103(4), p 2172–2182

    Article  CAS  Google Scholar 

  27. S.M. Rangappa, S. Siengchin, and J. Parameswaranpillai, Rheology of Shape-Memory Polymers, Polymer Blends, and Composites, Advanced Structured Materials, Springer, Berlin, 2020, p 85–94

    Book  Google Scholar 

  28. M. Teymouri, M. Kokabi, and G. Alamdarnejad, Conductive Shape memory Polyurethane/Multiwall Carbon Nanotube Nanocomposite Aerogels, J. Appl. Polym. Sci., 2020, 137(17), p 48602

    Article  CAS  Google Scholar 

  29. R.K. Gupta, S.A.R. Hashmi, S. Verma, A. Naik, and P. Nair, Recovery Stress and Storage Modulus of Microwave-Induced Graphene-Reinforced Thermoresponsive Shape Memory Polyurethane Nanocomposites, J. Mater. Eng. Perform., 2020, 29, p 205–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Arcelik A.S. of Turkey for kindly providing carbon black.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Ibrahim Unal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uranbey, L., Unal, H.I., Calis, G. et al. One-Pot Preparation of Electroactive Shape Memory Polyurethane/Carbon Black Blend. J. of Materi Eng and Perform 30, 1665–1673 (2021). https://doi.org/10.1007/s11665-021-05461-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05461-5

Keywords

Navigation