Skip to main content
Log in

Characterization of Various Carbon-Based Polypropylene Nanocomposites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Pure and three types of carbon additives including graphite, graphene, and multi-walled carbon nanotube added into polypropylene (PP) composites as a vibration damping component and sound insulator material in the automotive sector were investigated by using vibrational damping, dynamic mechanical analysis (DMA), tensile, hardness and acoustic behavior tests. According to the obtained results, porosity and distribution of carbon in the polymer matrix are key parameters on the composite parameters causing its reduction of tensile strength and its brittle behavior. Moreover, it seems that 0.01 wt.% graphene and 1 wt.% graphite added PP composites show the highest impact damping properties and also increase the storage and loss modulus of the composite while decreasing the glass transition temperature. The loss factor obtained from DMA and vibration damping test indicated the damping capacity in the interphase of carbon added PP composites depends only on the load applied and not sensitivity upon the natural frequency of the composite system. Depending on the morphological differentiation, graphene added PP composites decrease the sound transmission loss while the 0.1 wt.% MWCNT added PP composites increase sound transmission loss which makes it an alternative vibration damping component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.A. Milani, D. González, R. Quijada, N.R.S. Basso, M.L. Cerrada, D.S. Azambuja, and G.B. Galland, Polypropylene/Graphene Nanosheet Nanocomposites by In Situ Polymerization: Synthesis, Characterization, and Fundamental Properties, Compos. Sci. Technol., 2013, 84, p 1–7

    Article  CAS  Google Scholar 

  2. S. Moritomi, T. Watanabe, and S. Kanzaki, Polypropylene Compounds for Automotive Applications, Sumitomo Kagaku, 2010, 2010, p 1–16

    Google Scholar 

  3. M.N. Suddin, M.S. Salit, N. Ismail, M.A. Maleque, and S. Zainuddin, Total Design of Polymer Composite Automotive Bumper Fascia, Suranaree J. Sci. Technol., 2005, 12(1), p 39–45

    Google Scholar 

  4. A.P. Bafana, X. Yan, X. Wei, M. Patel, Z. Guo, S. Wei, and E.K. Wujcik, Polypropylene Nanocomposites Reinforced with Low Weight Percent Graphene Nanoplatelets, Compos. B Eng., 2017, 109, p 101–107

    Article  CAS  Google Scholar 

  5. H.A. Maddah, Polypropylene as a Promising Plastic: A Review, Am. J. Polym. Sci., 2016, 6(1), p 1–11

    CAS  Google Scholar 

  6. M.E. Achaby, F.E. Arrakhiz, S. Vaudreuil, A.E.K. Qaiss, M. Bousmina, and O. Fassi-Fehri, Mechanical, Thermal, and Rheological Properties of Graphene-Based Polypropylene Nanocomposites Prepared by Melt Mixing, Polym. Compos., 2012, 33(5), p 733–744

    Article  Google Scholar 

  7. J.Z. Liang, Q. Du, G.C.P. Tsui, and C.Y. Tang, Tensile Properties of Graphene Nano-platelets Reinforced Polypropylene Composites, Compos. B Eng., 2016, 95, p 166–171

    Article  CAS  Google Scholar 

  8. Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun, and Z. Guo, Poly (propylene)/Graphene Nanoplatelet Nanocomposites: Melt Rheological Behavior and Thermal, Electr. Electron. Prop. Macromol. Chem. Phys., 2011, 212(18), p 1951–1959

    Article  CAS  Google Scholar 

  9. B. Dittrich, K.A. Wartig, D. Hofmann, R. Mülhaupt, and B. Schartel, Carbon Black, Multiwall Carbon Nanotubes, Expanded Graphite, and Functionalized Graphene Flame Retarded Polypropylene Nanocomposites, Polym. Adv. Technol., 2013, 24(10), p 916–926

    Article  CAS  Google Scholar 

  10. C.C. Wang, Y.Y. Zhao, H.Y. Ge, and R.S. Qian, Enhanced Mechanical and Thermal Properties of Short Carbon Fiber Reinforced Polypropylene Composites by Graphene Oxide, Polym. Compos., 2018, 39(2), p 405–413

    Article  Google Scholar 

  11. H. Kim, A.A. Abdala, and C.W. Macosko, Graphene/Polymer Nanocomposites, Macromolecules, 2010, 43(16), p 6515–6530

    Article  CAS  Google Scholar 

  12. B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew, and Y. Hu, Preparation of Functionalized Graphene Oxide/Polypropylene Nanocomposite with Significantly Improved Thermal Stability and Studies on the Crystallization Behavior and Mechanical Properties, Chem. Eng. J., 2014, 237, p 411–420

    Article  CAS  Google Scholar 

  13. P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Fabrication of Exfoliated Graphene-Based Polypropylene Nanocomposites with Enhanced Mechanical and Thermal Properties, Polymer, 2011, 52(18), p 4001–4010

    Article  CAS  Google Scholar 

  14. R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, and A.K. Bhowmick, A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite-Reinforced Polymer Composites, Prog. Polym. Sci., 2011, 36(5), p 638–670

    Article  CAS  Google Scholar 

  15. C.L. Huang, C.W. Lou, C.F. Liu, C.H. Huang, X.M. Song, and J.H. Lin, Polypropylene/Graphene and Polypropylene/Carbon Fiber Conductive Composites: Mechanical, Crystallization and Electromagnetic Properties, Appl. Sci., 2015, 5, p 1196–1210

    Article  CAS  Google Scholar 

  16. I. Borovanska, R. Kotsilkova, M.M. Pradas, A. Valles-Lluch, and S. Djoumaliisky, Thermal, Mechanical and Viscoelastic Properties of Compatibilized Polypropylene/Multi-walled Carbon Nanotube Nanocomposites, J. Elastomers Plast., 2016, 48(7), p 576–599

    Article  CAS  Google Scholar 

  17. P. Verma, M. Verma, A. Gupta, S.S. Chauhan, R.S. Malik, and V. Choudhary, Multi-walled Carbon Nanotubes Induced Viscoelastic Response of Polypropylene Copolymer Nanocomposites: Effect of Filler Loading on Rheological Percolation, Polym. Test., 2016, 55, p 1–9

    Article  CAS  Google Scholar 

  18. A. Joy, S. Varughese, A.K. Kanjarla, S. Sankaran, and P. Haridoss, Effect of the Structure and Morphology of Carbon Nanotubes on the Vibration Damping Characteristics of Polymer-Based Composites, Nanoscale Adv., 2020, 2, p 1228–1235

    Article  CAS  Google Scholar 

  19. R. Casini, G. Papari, A. Andreone, D. Marrazzo, A. Patti, and P. Russo, Dispersion of Carbon Nanotubes in Melt Compounded Polypropylene-Based Composites Investigated by THz Spectroscopy, Opt. Express, 2015, 23(14), p 18181–18192

    Article  CAS  Google Scholar 

  20. S.M. Sapuan, N. Suddin, and M.A. Maleque, A Critical Review of Polymer-Based Composite Automotive Bumper Systems, Polym. Polym. Compos., 2002, 10(8), p 627–636

    CAS  Google Scholar 

  21. A. John and S. Alex, A Review on the Composite Materials used for Automotive Bumper in Passenger Vehicles, Int. J. Eng. Manag. Res., 2014, 4(4), p 98–101

    Google Scholar 

  22. S.U. Khan, C.Y. Li, N.A. Siddiqui, and J.K. Kim, Vibration Damping Characteristics of Carbon Fiber-Reinforced Composites Containing Multi-walled Carbon Nanotubes, Compos. Sci. Technol., 2011, 71(12), p 1486–1494

    Article  CAS  Google Scholar 

  23. N. Mohamad, J. Yaakub, H.E. Ab Maulod, A.R. Jeefferie, M.Y. Yuhazri, K.T. Lau, Q. Ahsan, M.I. Shueb, and R. Othman, Vibrational Damping Behaviors of Graphene Nanoplatelets Reinforced NR/EPDM Nanocomposites, J. Mech. Eng. Sci., 2017, 11(4), p 3274–3287

    Article  CAS  Google Scholar 

  24. H.Y. Ünal, G. Öner, and Y. Pekbey, Comparison of the Experimental Mechanical Properties and DMA Measurement of Nanoclay Hybrid Composites, Eur. Mech. Sci., 2018, 2(1), p 31–36

    Article  Google Scholar 

  25. S. Rajappan, P. Bhaskaran, and P. Ravindran, An Insight into the Composite Materials for Passive Sound Absorption, J. Appl. Sci., 2017, 17(7), p 339–356

    Article  Google Scholar 

  26. M. Tascan and E.A. Vaughn, Effects of Fiber Denier, Fiber Cross-Sectional Shape, and Fabric Density on Acoustical Behavior of Vertically Lapped Nonwoven Fabrics, J. Eng. Fibers Fabr., 2008, 3(2), p 32–38

    Google Scholar 

  27. A.V. Alaferdov, A. Gholamipour-Shirazi, M.A. Canesqui, Y.A. Danilov, and S.A. Moshkalev, Size-Controlled Synthesis of Graphite Nanoflakes and Multi-layer Graphene by Liquid-Phase Exfoliation of Natural Graphite, Carbon, 2014, 69, p 525–535

    Article  CAS  Google Scholar 

  28. A. Ciesielski and P. Samorì, Graphene via Sonication Assisted Liquid-Phase Exfoliation, Chem. Soc. Rev., 2014, 43, p 381–398

    Article  CAS  Google Scholar 

  29. K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, and J.N. Coleman, Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids, Nat. Mater., 2014, 13, p 624–630

    Article  CAS  Google Scholar 

  30. M.S. Kim, J. Yan, K.M. Kang, K.H. Joo, J.K. Pandey, Y.J. Kang, and S.H. Ahn, Soundproofing Properties of Polypropylene/Clay/Carbon Nanotube Nanocomposites, J. Appl. Polym. Sci., 2013, 130(1), p 504–509

    Article  CAS  Google Scholar 

  31. M. Rueppel, J. Rion, C. Dransfeld, C. Fischer, and K. Masania, Damping of Carbon Fibre and Flax Fibre Angle-Ply Composite Laminates, Compos. Sci. Technol., 2017, 146, p 1–9

    Article  CAS  Google Scholar 

  32. J. Zhang, S. He, P. Lv, and Y. Chen, Processing–Morphology–Property Relationships of Polypropylene-Graphene Nanoplatelets Nanocomposites, J. Appl. Polym. Sci., 2017, 134(8), p 44486

    Article  Google Scholar 

  33. J. Wei, M.S. Saharudin, T. Vo, and F. Inam, Dichlorobenzene: An Effective Solvent for Epoxy/Graphene Nanocomposites Preparation, R. Soc. Open Sci., 2017, 4(10), p 1–9

    Article  Google Scholar 

  34. M. Mehdikhani, L. Gorbatikh, I. Verpoest, and S.V. Lomov, Voids in Fiber-Reinforced Polymer Composites: A Review on Their Formation, Characteristics, and Effects on Mechanical Performance, J. Compos. Mater., 2019, 53(12), p 1579–1669

    Article  CAS  Google Scholar 

  35. S.H. Yetgin, Effect of Multi Walled Carbon Nanotube on Mechanical, Thermal and Rheological Properties of Polypropylene, J. Mater. Res. Technol., 2019, 8(5), p 4725–4735

    Article  CAS  Google Scholar 

  36. M.V. Gelfuso, D. Thomazini, J.C.S. Souza, and J.J.L. Junior, Vibrational Analysis of Coconut Fiber-PP Composites, Mater. Res., 2014, 17(2), p 367–372

    Article  Google Scholar 

  37. S. Corn, J.S. Dupuy, P. Ienny, and L. Daridon, Vibration Analysis Techniques for Detecting Filler-Matrix Decohesion in Composites, Revue Compos. Matér. Avan., 2012, 22(1), p 77–90

    Article  CAS  Google Scholar 

  38. M.K. Gupta, Effect of Variation in Frequencies on Dynamic Mechanical Properties of Jute Fibre Reinforced Epoxy Composites, J. Mater. Environ. Sci., 2018, 9(1), p 100–106

    CAS  Google Scholar 

  39. S.K. Bhudolia, P. Perrotey, and S.C. Joshi, Enhanced Vibration Damping and Dynamic Mechanical Characteristics of Composites with Novel Pseudo-Thermoset Matrix System, Compos. Struct., 2017, 179, p 502–513

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Fahri Sarac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, O., Buran, D., Akkurt, N. et al. Characterization of Various Carbon-Based Polypropylene Nanocomposites. J. of Materi Eng and Perform 30, 190–201 (2021). https://doi.org/10.1007/s11665-020-05398-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05398-1

Keywords

Navigation