Skip to main content
Log in

Analysis of the Influence of Sulfur on the Hot Tensile Fracture of C71500 Cu-Ni Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The hot tensile test was applied to study the influence of sulfur content on the high-temperature mechanical properties of C71500 Cu-Ni alloy. The hot processing map of C71500 alloy was established according to the test results. It is found that the increase of sulfur content has no visible effect on the tensile strength of C71500 alloy at high temperature, but has a great effect on the elongation and reduction area of fracture. Through optical microscopy, scanning electron microscopy and energy-dispersive x-ray spectroscopy analysis of fracture samples, it can be qualitatively determined that the composition of sulfur inclusions is (Mn,Fe,Ni)S, which is plastically deformable in the process of hot deformation. However, due to the difference of plasticity between the inclusions and the matrix, stress concentration is easy to occur, thus reducing the overall plasticity of C71500 alloy. Based on the proposed dynamic material model theory, the processing maps with different sulfur contents were established, which could show the destruction effect of sulfur on the high-temperature plastic deformation of C71500 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Ladan and S. John, Effect of Elemental Sulfur and Sulfide on the Corrosion Behavior of Cr-Mo Low Alloy Steel for Tubing and Tubular Components in Oil and Gas Industry, Materials, 2017, 10(4), p 430

    Article  Google Scholar 

  2. F. Qayyum, S. Guk, R. Kawalla, and U. Prahl, Experimental Investigations and Multiscale Modeling to Study the Effect of Sulfur Content on Formability of 16MnCr5 Alloy Steel, Steel Res. Int., 2018, 90, p 1800369

    Article  Google Scholar 

  3. Z. Feng, G. Ming, T. Ganfeng, L. Kui, and P. Kewu, Effect of Sulfur on Hot Ductility of Ni-Cr-W-Al Superalloy, Hot Work. Technol., 2013, 042(006), p 10–12

    Google Scholar 

  4. H. Sawada, First-Principles Study of Grain Boundary Embrittlement in Fe-Ni-S Alloy, Comput. Mater. Sci., 2012, 55, p 17–22

    Article  CAS  Google Scholar 

  5. X.B. Li, Y.Q. Xie, and Y.X. Zhu, An Ultra-sulfur Hastelloy Alloy C-4, Mater. Corros., 2005, 56(9), p 636–638

    Article  Google Scholar 

  6. H. Song, S. Guo, and Z. Hu, Effect of Sulfur on Creep Behavior of IN718 Alloy, J. Aeronaut. Mater., 1999, 19(1), p 15–16

    Google Scholar 

  7. H. Song, S. Guo, D. Lu, and Z. Hu, Influences of Sulfur Doping on Superalloy IN718, Acta Metall. Sin., 1999, 3, p 281–284

    Google Scholar 

  8. D.J. Xin, X.B. Liu, T. Bin, Y.H. Hu, X.Z. Chao, and X.X. Shan, Effect of Sulfur on Microstructure and Properties of Inconel 718 Superalloy, Acta Metall. Sin., 1996, 3, p 241–244

    Google Scholar 

  9. B. Lv, F.C. Zhang, M. Li, R.J. Hou, L.H. Qian, and T.S. Wang, Effects of Phosphorus and Sulfur on the Thermoplasticity of High Manganese Austenitic Steel, Mater. Sci. Eng., A, 2010, 527(21–22), p 5648–5653

    Article  Google Scholar 

  10. J.H. Hong, S.W. Nam, and S.P. Choi, The Influences of Sulphur and Phosphorus Additions on the Creep Cavitation Characteristics in Type 304 Stainless Steels, J. Mater. Sci., 1986, 21(11), p 3966–3976

    Article  CAS  Google Scholar 

  11. M. Liu and J. Li, In-Situ Raman Characterization of Initial Corrosion Behavior of Copper in Neutral 3.5% (wt.) NaCl Solution, Materials, 2019, 12(13), p 2164

    Article  CAS  Google Scholar 

  12. X. Gao, H.B. Wu, M. Liu, Y.X. Zhang, and X.D. Zhou, Dynamic Recovery and Recrystallization Behaviors of C71500 Copper-Nickel Alloy under Hot Deformation, J. Mater. Eng. Perform., 2020, 29, p 7678–7692

  13. X. Gao, H.B. Wu, M. Liu, and X.D. Zhou, Effect of Annealing Time on Grain Boundary Characteristics of C71500 Cupronickel Alloy Tubes with Different Deformation, Mater. Charact., 2020, 169, p 110603

    Article  CAS  Google Scholar 

  14. H.L. Gegel, J.C. Malas, J.S. Gunasekera, J.T. Morgan, S.M. Doraivelu, M. Whitaker, and H.L. Henrich, Computer-Aided Design of Extrusion Dies by Metal-Flow Simulation, Agard Process Modeling Appl. to Metal Forming & Thermomech process, Vol 1, 1984

  15. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15(10), p 1883–1892

    Article  Google Scholar 

  16. Y.V.R.K. Prasad, Author’s Reply: Dynamic Materials Model: Basis and Principles, Metall. Mater. Trans. A, 1996, 27(1), p 235–236

    Article  Google Scholar 

  17. Z. Yi, C. Zhe, A.A. Volinsky, B. Tian, H. Sun, L. Ping, and L. Yong, Processing Maps for the Cu-Cr-Zr-Y Alloy Hot Deformation Behavior, Mater. Sci. Eng., A, 2016, 662, p 320–329

    Article  Google Scholar 

  18. Y. Zhang, H.L. Sun, A.A. Volinsky, B.H. Tian, Z. Chai, P. Liu, and Y. Liu, Characterization of the Hot Deformation Behavior of Cu-Cr-Zr Alloy by Processing Maps, Acta Metall. Sin., 2016, 29(5), p 1–9

    Google Scholar 

  19. J. Gao, M.-Q. Li, S.-F. Liu, and G.-J. Liu, Deformation Behavior and Processing Maps during Isothermal Compression of TC21 Alloy, Rare Met., 2017, 36(2), p 1–9

    Article  Google Scholar 

  20. Z. Zhou, Q. Fan, Z. Xia, A. Hao, W. Yang, J. Wei, and H. Cao, Constitutive Relationship and Hot Processing Maps of Mg-Gd-Y-Nb-Zr Alloy, J. Mater. Sci. Technol., 2017, 33(7), p 637–644

    Article  CAS  Google Scholar 

  21. Q. Liang, Q. Hao, H. Zhao, and Y. Zhang, Constitutive Equation and Processing Map of CuNi10Fe1Mn Alloy Based on High-Temperature Deformation Behavior, Mater. Res. Express, 2018, 5(5), p 1–10

    Google Scholar 

  22. J. Deng, Y.C. Lin, S.-S. Li, J. Chen, and Y. Ding, Hot Tensile Deformation and Fracture Behaviors of AZ31 Magnesium Alloy, Mater. Des., 2013, 49, p 209–219

    Article  CAS  Google Scholar 

  23. Y.C. Lin, J. Deng, Y.-Q. Jiang, D.-X. Wen, and G. Liu, Effects of Initial δ Phase on Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy, Mater. Des., 2014, 55, p 949–957

    Article  CAS  Google Scholar 

  24. M. Zhou, Y.C. Lin, J. Deng, and Y.-Q. Jiang, Hot Tensile Deformation Behaviors and Constitutive Model of an Al-Zn-Mg-Cu Alloy, Mater. Des., 2014, 59, p 141–150

    Article  CAS  Google Scholar 

  25. B. Chen, W.M. Zhou, S. Li, X.L. Li, and C. Lu, Hot Compression Deformation Behavior and Processing Maps of Mg-Gd-Y-Zr Alloy, J. Mater. Eng. Perform., 2013, 22(9), p 2458–2466

    Article  CAS  Google Scholar 

  26. W. Prager, On Ideal Locking Materials, Trans. Soc. Rheol. (1957-1977), 1957, 1(1), p 169–175

    Article  Google Scholar 

  27. Z. Wen, X. Gao, J. Cheng, Z. Hu, L. Li, B. Zhao, and P. Zhang, Processing Map and Hot Deformation Behavior of Mo-Nb Single Crystals, Rare Met. Mater. Eng., 2018, 47(2), p 485–490

    Article  Google Scholar 

  28. T. Zhong, P.K. Rao, V.R.K.Y. Prasad, and M. Gupta, Processing Maps, Microstructure Evolution and Deformation Mechanisms of Extruded AZ31-DMD during Hot Uniaxial Compression, Mater. Sci. Eng., A, 2013, 559, p 773–781

    Article  CAS  Google Scholar 

  29. K.P. Rao, T. Zhong, Y.V.R.K. Prasad, K. Suresh, and M. Gupta, Hot Working Mechanisms in DMD-Processed Versus Cast AZ31-1 wt% CA Alloy, Mater. Sci. Eng., A, 2015, 644(8), p 184–193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Industry and Information Technology of the People’s Republic of China (TC170A2KN-8), the National Natural Science Foundation of China (No. 51801149), the Industrialization Project of Scientific and Technological Achievements in Wuxi City (CYE22C1706), and the Wuxi Enterprise Academician Workstation (CYR1701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huibin Wu or Ming Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Wu, H., Liu, M. et al. Analysis of the Influence of Sulfur on the Hot Tensile Fracture of C71500 Cu-Ni Alloy. J. of Materi Eng and Perform 30, 312–319 (2021). https://doi.org/10.1007/s11665-020-05381-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05381-w

Keywords

Navigation