Skip to main content

Advertisement

Log in

Enhanced Power Density of Graphene Oxide–Phosphotetradecavanadate Nanohybrid for Supercapacitor Electrode

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Successful exploration of supercapacitor (SC) material to integrate with high energy and high power density storage device still remains a daunting challenge. Conducting carbon nanostructures have been primarily used for this purpose; however, most of their surface area remains unutilized throughout the storage process. Herein, a new type of hybrid material has been reported by effectively using active sides of carbon nanostructures. Insertion of faradaic-type polyoxometalates (POMs), namely phosphotetradecavanadate (Na7[H2PV14O42], hereafter described as PV14), into the graphene oxide (GO) matrix creates a novel hybrid material for SC applications. Owing to the formation of nanohybrid, it can store charges both electrostatically and electrochemically. PV14/GO composite’s electrochemical behavior in different electrolyte (acidic/neutral) solutions shows different types of characteristics. The PV14/GO composite as a working electrode exhibits a high galvanostatic capacitance of 139 F/g while maintaining at a power density of 97.94 W/kg in 0.25 M H2SO4 electrolyte. The specific energy density was also found out to be around 56.58 Wh/kg at a 5 mV/s scan rate for the same electrolyte. Furthermore, in 1 M Na2SO4 solution, PV14/GO composite demonstrates a specific capacitance of 85.4 F/g at a scan rate of 5 mV/s. The equivalent series resistance for the device was found to be approximately 0.51 Ω with a circuit resistance of 3.881 Ω, using electrochemical impedance spectroscopy. The cell capacitance, employing the Nyquist plot, was calculated to be around 2.78 mF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Dong, C. Xu, Y. Li, Z.H. Huang, F. Kang, Q.H. Yang, and X. Zhaow, Flexible Electrodes and Supercapacitors for Wearable Energy Storage: A Review by Category, J. Mater. Chem. A, 2016, 4(13), p 4659–4685

    Article  CAS  Google Scholar 

  2. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, and D. Su, Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, 2011, 332(6037), p 1537–1541

    Article  CAS  Google Scholar 

  3. P. Simon, and Y. Gogotsi, Materials for Electrochemical Capacitors, in Nanoscience and Technology: A Collection of Reviews from Nature Journals, 2010, p 320-329.

  4. K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao, and J. Chen, Nanostructured Mn-Based Oxides for Electrochemical Energy Storage and Conversion, Chem. Soc. Rev., 2015, 44(3), p 699–728

    Article  Google Scholar 

  5. J. Vatamanu, Z. Hu, D. Bedrov, C. Perez, and Y. Gogotsi, Increasing Energy Storage in Electrochemical Capacitors with Ionic Liquid Electrolytes and Nanostructured Carbon Electrodes, J. Phys. Chem. Lett., 2013, 4(17), p 2829–2837

    Article  CAS  Google Scholar 

  6. G.Z. Chen, Understanding Supercapacitors Based on Nano-hybrid Materials with Interfacial Conjugation, Progr. Nat. Sci.: Mater. Int., 2013, 23(3), p 245–255

    Article  CAS  Google Scholar 

  7. W. Li, F. Zhang, Y. Dou, Z. Wu, H. Liu, X. Qian, D. Gu, Y. Xia, B. Tu, and D. Zhao, A Self-Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes, Adv. Energy Mater., 2011, 1(3), p 382–386

    Article  CAS  Google Scholar 

  8. C.H.A. Wong, A. Ambrosi, and M. Pumera, Thermally Reduced Graphenes Exhibiting a Close Relationship to Amorphous Carbon, Nanoscale, 2012, 4(16), p 4972–4977

    Article  Google Scholar 

  9. E. Raymundo-Piñero, F. Leroux, and F. Béguin, A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer, Adv. Mater., 2006, 18(14), p 1877–1882

    Article  Google Scholar 

  10. C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Graphene-Based Supercapacitor with an Ultrahigh Energy Density, Nano Lett., 2010, 10(12), p 4863–4868

    Article  CAS  Google Scholar 

  11. Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, and R.B. Kaner, Graphene-Based Materials for Flexible Supercapacitors, Chem. Soc. Rev., 2015, 44(11), p 3639–3665

    Article  CAS  Google Scholar 

  12. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, and Y. Yang, What is the Choice for Supercapacitors: Graphene or Graphene Oxide?, Energy Environ. Sci., 2011, 4(8), p 2826–2830

    Article  CAS  Google Scholar 

  13. Q. Zhang, K. Scrafford, M. Li, Z. Cao, Z. Xia, P.M. Ajayan, and B. Wei, Anomalous Capacitive Behaviors of Graphene Oxide Based Solid-State Supercapacitors, Nano Lett., 2014, 14(4), p 1938–1943

    Article  CAS  Google Scholar 

  14. R.B. Rakhi and M.L. Lekshmi, Reduced Graphene Oxide Based Ternary Nanocomposite Cathodes for High-Performance Aqueous Asymmetric Supercapacitor, Electrochim. Acta, 2017, 231, p 539–548

    Article  CAS  Google Scholar 

  15. S. Wang, N. Liu, J. Su, L. Li, F. Long, Z. Zou, X. Jiang, and Y. Gao, Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs, ACS Nano, 2017, 11(2), p 2066–2074

    Article  CAS  Google Scholar 

  16. X. Xiao, T. Li, Z. Peng, H. Jin, Q. Zhong, Q. Hu, B. Yao, Q. Luo, C. Zhang, L. Gong, and J. Chen, Freestanding Functionalized Carbon Nanotube-Based Electrode for Solid-State Asymmetric Supercapacitors, Nano Energy, 2014, 6, p 1–9

    Article  Google Scholar 

  17. Q. Zhang, C. Cai, J. Qin, and B. Wei, Tunable Self-Discharge Process of Carbon Nanotube Based Supercapacitors, Nano Energy, 2014, 4, p 14–22

    Article  CAS  Google Scholar 

  18. P.C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes, ACS Nano, 2010, 4(8), p 4403–4411

    Article  CAS  Google Scholar 

  19. K. Leitner, A. Lerf, M. Winter, J.O. Besenhard, S. Villar-Rodil, F. Suarez-Garcia, A. Martinez-Alonso, and J.M.D. Tascon, Nomex-Derived Activated Carbon Fibers as Electrode Materials in Carbon Based Supercapacitors, J. Power Sources, 2006, 153(2), p 419–423

    Article  CAS  Google Scholar 

  20. Y. Huang, Y. Zhao, Q. Gong, M. Weng, J. Bai, X. Liu, Y. Jiang, J. Wang, D. Wang, Y. Shao, and M. Zhao, Experimental and Correlative Analyses of the Ageing Mechanism of Activated Carbon Based Supercapacitor, Electrochim. Acta, 2017, 228, p 214–225

    Article  CAS  Google Scholar 

  21. H. Xia, Y.S. Meng, G. Yuan, C. Cui, and L. Lu, A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte, Electrochem. Solid State Lett., 2012, 15(4), p A60

    Article  CAS  Google Scholar 

  22. O. Ghodbane, J.L. Pascal, and F. Favier, Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors, ACS Appl. Mater. Interfaces, 2009, 1(5), p 1130–1139

    Article  CAS  Google Scholar 

  23. M. Sadakane and E. Steckhan, Electrochemical Properties of Polyoxometalates as Electrocatalysts, Chem. Rev., 1998, 98(1), p 219–238

    Article  CAS  Google Scholar 

  24. J. Hu, Y. Ji, W. Chen, C. Streb, and Y.F. Song, “Wiring” Redox-Active Polyoxometalates to Carbon Nanotubes Using a Sonication-Driven Periodic Functionalization Strategy, Energy Environ. Sci., 2016, 9(3), p 1095–1101

    Article  CAS  Google Scholar 

  25. S. Kumari, S. Maity, A.A. Vannathan, D. Shee, P.P. Das, and S. Mal, Improved Electrochemical Performance of Graphene Oxide Supported Vanadomanganate (IV) Nanohybrid Electrode Material for Supercapacitors, Ceram. Int., 2020, 46(3), p 3028–3035

    Article  CAS  Google Scholar 

  26. E. Ni, S. Uematsu, Z. Quan, and N. Sonoyama, Improved Electrochemical Property of Nanoparticle Polyoxovanadate K7NiV13O38 as Cathode Material for Lithium Battery, J. Nanopart. Res., 2013, 15(6), p 1732

    Article  Google Scholar 

  27. A. Afif, S.M. Rahman, A.T. Azad, J. Zaini, M.A. Islan, and A.K. Azad, Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage—A Review, J. Energy Storage, 2019, 25, p 100852

    Article  Google Scholar 

  28. S. Najib and E. Erdem, Current Progress Achieved in Novel Materials for Supercapacitor Electrodes: Mini Review, Nanoscale Adv., 2019, 1(8), p 2817–2827

    Article  Google Scholar 

  29. A.K. Cuentas-Gallegos, R. Martínez-Rosales, M. Baibarac, P. Gomez-Romero, and M.E. Rincón, Electrochemical Supercapacitors Based on Novel Hybrid Materials Made of Carbon Nanotubes and Polyoxometalates, Electrochem. Commun., 2007, 9(8), p 2088–2092

    Article  CAS  Google Scholar 

  30. J.J. Chen, M.D. Symes, S.C. Fan, M.S. Zheng, H.N. Miras, Q.F. Dong, and L. Cronin, High-Performance Polyoxometalate-Based Cathode Materials for Rechargeable Lithium-Ion Batteries, Adv. Mater., 2015, 27(31), p 4649–4654

    Article  CAS  Google Scholar 

  31. X. Sang, X. Xu, L. Bian, X. Liu, and Y. Wang, The Loading of Polyoxometalates Based Compound on Reduced Graphene Oxide, a Composite Material for Electrical Energy Storage and Tetracycline Removal, Solid State Sci., 2018, 83, p 8–16

    Article  CAS  Google Scholar 

  32. C.C. Lin, W.H. Lin, S.C. Huang, C.W. Hu, T.Y. Chen, C.T. Hsu, H. Yang, A. Haider, Z. Lin, U. Kortz, and U. Stimming, Mechanism of Sodium Ion Storage in Na7 [H2PV14O42] Anode for Sodium-Ion Batteries, Adv. Mater. Interfaces, 2018, 5(15), p 1800491

    Article  Google Scholar 

  33. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano, 2010, 4(8), p 4806–4814

    Article  CAS  Google Scholar 

  34. S. Jana, N. Singh, A.S. Bhattacharyya, and G.P. Singh, Synthesis of Self-Assembled rGO-Co3O4 Nanoparticles in Nanorods Structure for Supercapacitor Application, J. Mater. Eng. Perform., 2018, 27(6), p 2741–2746

    Article  CAS  Google Scholar 

  35. T. Liu, L. Li, L. Zhang, B. Cheng, W. You, and J. Yu, 0D/2D (Fe0. 5Ni0. 5) S2/rGO Nanocomposite with Enhanced Supercapacitor and Lithium Ion Battery Performance, J. Power Sources, 2019, 426, p 266–274

    Article  CAS  Google Scholar 

  36. H.Y. Chen, G. Wee, R. Al-Oweini, J. Friedl, K.S. Tan, Y. Wang, C.L. Wong, U. Kortz, U. Stimming, and M. Srinivasan, A Polyoxovanadate as an Advanced Electrode Material for Supercapacitors, ChemPhysChem, 2014, 15, p 2162–2169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was fully supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, under scheme 01/(/(2906)/17/EMR-II. S.M. and A.A.V. thank the National Institute of Technology Karnataka for financial assistance to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Partha Pratim Das or Sib Sankar Mal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, S., Vannathan, A.A., Kumar, K. et al. Enhanced Power Density of Graphene Oxide–Phosphotetradecavanadate Nanohybrid for Supercapacitor Electrode. J. of Materi Eng and Perform 30, 1371–1377 (2021). https://doi.org/10.1007/s11665-020-05349-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05349-w

Keywords

Navigation