Skip to main content
Log in

Boro-Austempering Treatment of High-Strength Bainitic Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-strength bainitic steels are considered potential candidates for the 3rd generation of advanced high-strength steels (AHSS). The main characteristic of silicon-alloyed steels is the presence of carbide-free bainite, obtained by low-temperature austempering. Salt bath boriding is an effective method for increasing wear resistance and provides high corrosion resistance. The combination of these two treatments is called boro-austempering and is a promising alternative to increase the wear resistance of AHSS. In the present work, samples were borided at 900 °C for 2 h, direct-cooled from that temperature and isothermally held in a salt bath at 360 °C for 1 and 3 h. The substrate and the layers produced were characterized by optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD), Vickers microhardness (HRV) and microadhesive wear tests. The tribological characteristics of the layers were compared with those of the substrate. The microscopic analysis showed the effectiveness of boro-austempering treatment in the production of carbide-free bainite microstructure and the surface borided layers. As a result, there were increases in surface wear resistance up to 115% when compared to the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.Y. Demeri, T.K. Roy, B. Bhattacharya, C. Ghosh, and S.K. Ajmani, Ed., Advanced High-Strength Steels: Science, Technology, and Applications, Springer, Singapore, 2018

    Google Scholar 

  2. K. Sugimoto, T. Hojo, and J. Kobayashi, Critical Assessment 29: TRIP-Aided Bainitic Ferrite Steels, Mater. Sci. Technol., 2017, 33(17), p 2005–2009. https://doi.org/10.1080/02670836.2017.1356014

    Article  CAS  Google Scholar 

  3. H.K.D.H. Bhadeshia, Bainite in Steels: Theory and Practice, CRC Press, Boca Raton, 2019

    Book  Google Scholar 

  4. F.G. Caballero and H.K.D.H. Bhadeshia, Very Strong Bainite, Curr. Opin. Solid State Mater. Sci., 2004, 8(3-4), p 251–257

    Article  CAS  Google Scholar 

  5. F.G. Caballero and C. Garcia-Mateo, Phase Transformations in Advanced Bainitic Steels, Phase Transform. Steels, 2012, 2, p 271–294

    Article  CAS  Google Scholar 

  6. J.G. Speer, A.L. Araujo, D.K. Matlock, and E. De Moor, Nb-Microalloying in Next-Generation Flat-Rolled Steels: An Overview, Mater. Sci. Forum, 2017, 879, p 1834–1840

    Article  Google Scholar 

  7. K. Hausmann, D. Krizan, K. Spiradek-Hahn, A. Pichler, and E. Werner, The Influence of Nb on Transformation Behavior and Mechanical Properties of TRIP-Assisted Bainitic-Ferritic Sheet Steels, Mater. Sci. Eng. A, 2013, 588, p 142–150

    Article  CAS  Google Scholar 

  8. P. Zhang, F.C. Zhang, Z.G. Yan, T.S. Wang, and L.H. Qian, Wear Property of Low-Temperature Bainite in the Surface Layer of a Carburized Low Carbon Steel, Wear, 2011, 271(5-6), p 697–704

    Article  CAS  Google Scholar 

  9. S. Sharma, S. Sangal, and K. Mondal, Wear Behavior of Newly Developed Bainitic Wheel Steels, J. Mater. Eng. Perform., 2015, 24(2), p 999–1010

    Article  CAS  Google Scholar 

  10. M. Natori, Y. Mizuno, S.-M. Song, and K.-I. Sugimoto, Effects of Fine Particle Peening on Fatigue Strength of TRIP-Aided Bainitic Ferrite Steel, J. Soc. Mater. Sci. Jpn., 2015, 64(8), p 620–627

    Article  CAS  Google Scholar 

  11. D. Fabijanic, I. Timokhina, H. Beladi, and P. Hodgson, The Nitrocarburising Response of Low Temperature Bainite Steel, Metals (Basel)., 2017, 7(7), p 234. https://doi.org/10.3390/met7070234

    Article  CAS  Google Scholar 

  12. A.K. Sinha and Boriding (Boronizing), ASM Handbook, Volume 4: Heat Treating, Cleveland, ASM International, 1991, p 437–447

    Google Scholar 

  13. L.C. Casteletti, F.A.P. Fernandes, S.C. Heck, C.K.N. De Oliveira, A. Lombardi-Neto, and G.E. Totten, Pack and Salt Bath Diffusion Treatments on Steels, Heat Treat. Prog., 2009, 9, p 49–52

    CAS  Google Scholar 

  14. F.E. Mariani, C. Soares, A. Lombardi Neto, G.E. Totten, and L.C. Casteletti, Boro-Austempering Treatment of Ductile Cast Irons, Mater. Res., 2018, https://doi.org/10.1590/1980-5373-mr-2017-0927

    Article  Google Scholar 

  15. F.E. Mariani, G. Bortoluci de Assis, L.C. Casteletti, A.L. Neto, and G.E. Totten, Austempering and Boro-Austempering Treatments in Gray Cast Iron, Mater. Perform. Charact., 2017, 6(1), p 262–271. https://doi.org/10.1520/MPC20150038

    Article  CAS  Google Scholar 

  16. E384-17, Standard Test Method for Microindentation Hardness of Materials, ASTM B. Stand., 2017.

  17. K.L.L. Rutherford and I.M.M. Hutchings, Theory and Application of a Micro-Scale Abrasive Wear Test, J. Test. Eval., 1997, 25(2), p 250. https://doi.org/10.1520/jte11487j

    Article  CAS  Google Scholar 

  18. K.L. Rutherford and I.M. Hutchings, A Micro-Abrasive Wear Test, with Particular Application to Coated Systems, Surf. Coat. Technol., 1996, 79(1-3), p 231–239. https://doi.org/10.1016/0257-8972(95)02461-1

    Article  CAS  Google Scholar 

  19. M. Triani, F. Gomes, P.G. Oliveira, G.E. Totten, and L.C. Casteletti, Improvement of the Tribological Characteristics of AISI, 8620, 8640 and 52100 Steels through Thermo-Reactive Treatments, Lubricants, 2019, 7(8), p 63. https://doi.org/10.3390/lubricants7080063

    Article  Google Scholar 

  20. K.-I. Sugimoto, T. Muramatsu, S.-I. Hashimoto, and Y. Mukai, Formability of Nb Bearing Ultra High-Strength TRIP-Aided Sheet Steels, J. Mater. Process. Technol., 2006, 177(1-3), p 390–395. https://doi.org/10.1016/j.jmatprotec.2006.03.186

    Article  CAS  Google Scholar 

  21. H. Hu, G. Xu, M. Zhou, and Q. Yuan, Effect of Mo Content on Microstructure and Property of Low-Carbon Bainitic Steels, Metals (Basel)., 2016, 6(8), p 173. https://doi.org/10.3390/met6080173

    Article  CAS  Google Scholar 

  22. L. Qian, Q. Zhou, F. Zhang, J. Meng, M. Zhang, and Y. Tian, Microstructure and Mechanical Properties of a Low Carbon Carbide-Free Bainitic Steel Co-Alloyed with Al and Si, Mater. Des., 2012, 39, p 264–268

    Article  CAS  Google Scholar 

  23. M. Ipek, G. Celebi Efe, I. Ozbek, S. Zeytin, and C. Bindal, Investigation of Boronizing Kinetics of AISI, 51100 Steel, J. Mater. Eng. Perform., 2012, 21(5), p 733–738. https://doi.org/10.1007/s11665-012-0192-5

    Article  CAS  Google Scholar 

  24. A.G. Matuschka, Boronizing, 1st ed., Heyden and Son, London, 1980

    Google Scholar 

  25. M. Carbucicchio and G. Palombarini, Effects of Alloying Elements on the Growth of Iron Boride Coatings, J. Mater. Sci. Lett., 1987, 6, p 1147–1149

    Article  CAS  Google Scholar 

  26. L.C. Casteletti, A.N. Lombardi, and G.E.T. Boriding, Encyclopedia of Tribology, Springer, Boston, 2013, p 249–255. https://doi.org/10.1007/978-0-387-92897-5_727

    Book  Google Scholar 

  27. H. Hu, G. Xu, L. Wang, Z. Xue, Y. Zhang, and G. Liu, The Effects of Nb and Mo Addition on Transformation and Properties in Low Carbon Bainitic Steels, Mater. Des., 2015, 84, p 95–99. https://doi.org/10.1016/j.matdes.2015.06.133

    Article  CAS  Google Scholar 

  28. K.G. Budinski, Friction, Wear, and Erosion Atlas, CRC Press, Boca Raton, 2013. https://doi.org/10.1201/b15984

    Book  Google Scholar 

  29. K.-H. Zum Gahr, Microstructure and Wear of Materials, 1st ed., Elsevier, Amsterdam, 1987

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Baldan LTDA and Villares Metals S.A for technical support and the Laboratory of Structural Characterization (LCE/DEMa/UFSCar) for the general facilities. This work was carried out with the support of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Brazil, Code of Funding 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Edson Mariani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to JMEP selected from presentations at the 30th Heat Treating Society Conference and Exposition held October 15-17, 2019, in Detroit, Michigan, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, P.G.B., Mariani, F.E., Casteletti, L.C. et al. Boro-Austempering Treatment of High-Strength Bainitic Steels. J. of Materi Eng and Perform 29, 3486–3493 (2020). https://doi.org/10.1007/s11665-020-04590-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04590-7

Keywords

Navigation